Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Jacobson is active.

Publication


Featured researches published by David A. Jacobson.


Journal of Biological Chemistry | 2007

Modulation of the Pancreatic Islet β-Cell-delayed Rectifier Potassium Channel Kv2.1 by the Polyunsaturated Fatty Acid Arachidonate

David A. Jacobson; Christopher R. Weber; Shunzhong Bao; John Turk; Louis H. Philipson

Glucose stimulates both insulin secretion and hydrolysis of arachidonic acid (AA) esterified in membrane phospholipids of pancreatic islet β-cells, and these processes are amplified by muscarinic agonists. Here we demonstrate that nonesterified AA regulates the biophysical activity of the pancreatic islet β-cell-delayed rectifier channel, Kv2.1. Recordings of Kv2.1 currents from INS-1 insulinoma cells incubated with AA (5 μm) and subjected to graded degrees of depolarization exhibit a significantly shorter time-to-peak current interval than do control cells. AA causes a rapid decay and reduced peak conductance of delayed rectifier currents from INS-1 cells and from primary β-cells isolated from mouse, rat, and human pancreatic islets. Stimulating mouse islets with AA results in a significant increase in the frequency of glucose-induced [Ca2+] oscillations, which is an expected effect of Kv2.1 channel blockade. Stimulation with concentrations of glucose and carbachol that accelerate hydrolysis of endogenous AA from islet phosphoplipids also results in accelerated Kv2.1 inactivation and a shorter time-to-peak current interval. Group VIA phospholipase A2 (iPLA2β) hydrolyzes β-cell membrane phospholipids to release nonesterified fatty acids, including AA, and inhibiting iPLA2β prevents the muscarinic agonist-induced accelerated Kv2.1 inactivation. Furthermore, glucose and carbachol do not significantly affect Kv2.1 inactivation in β-cells from iPLA2β-/- mice. Stably transfected INS-1 cells that overexpress iPLA2β hydrolyze phospholipids more rapidly than control INS-1 cells and also exhibit an increase in the inactivation rate of the delayed rectifier currents. These results suggest that Kv2.1 currents could be dynamically modulated in the pancreatic islet β-cell by phospholipase-catalyzed hydrolysis of membrane phospholipids to yield non-esterified fatty acids, such as AA, that facilitate Ca2+ entry and insulin secretion.


The Journal of Physiology | 2010

Calcium‐activated and voltage‐gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses

David A. Jacobson; Felipe Mendez; Michael Thompson; Jacqueline Torres; Olivia Cochet; Louis H. Philipson

Glucose‐induced β‐cell action potential (AP) repolarization is regulated by potassium efflux through voltage gated (Kv) and calcium activated (KCa) potassium channels. Thus, ablation of the primary Kv channel of the β‐cell, Kv2.1, causes increased AP duration. However, Kv2.1−/− islet electrical activity still remains sensitive to the potassium channel inhibitor tetraethylammonium. Therefore, we utilized Kv2.1−/− islets to characterize Kv and KCa channels and their respective roles in modulating the β‐cell AP. The remaining Kv current present in Kv2.1−/−β‐cells is inhibited with 5 μm CP 339818. Inhibition of the remaining Kv current in Kv2.1−/− mouse β‐cells increased AP firing frequency by 39.6% but did not significantly enhance glucose stimulated insulin secretion (GSIS). The modest regulation of islet AP frequency by CP 339818 implicates other K+ channels, possibly KCa channels, in regulating AP repolarization. Blockade of the KCa channel BK with slotoxin increased β‐cell AP amplitude by 28.2%, whereas activation of BK channels with isopimaric acid decreased β‐cell AP amplitude by 30.6%. Interestingly, the KCa channel SK significantly contributes to Kv2.1−/− mouse islet AP repolarization. Inhibition of SK channels decreased AP firing frequency by 66% and increased AP duration by 67% only when Kv2.1 is ablated or inhibited and enhanced GSIS by 2.7‐fold. Human islets also express SK3 channels and their β‐cell AP frequency is significantly accelerated by 4.8‐fold with apamin. These results uncover important repolarizing roles for both Kv and KCa channels and identify distinct roles for SK channel activity in regulating calcium‐ versus sodium‐dependent AP firing.


Diabetes | 2013

β-Cell–Specific Protein Kinase A Activation Enhances the Efficiency of Glucose Control by Increasing Acute Phase Insulin Secretion

Kelly A. Kaihara; Lorna M. Dickson; David A. Jacobson; Natalia A. Tamarina; Michael W. Roe; Louis H. Philipson; Barton Wicksteed

Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose.


PLOS ONE | 2012

The Physiological Effects of Deleting the Mouse Slc30a8 Gene Encoding Zinc Transporter-8 Are Influenced by Gender and Genetic Background

Lynley D. Pound; Suparna A. Sarkar; Alessandro Ustione; Prasanna K. Dadi; Catherine E. Lee; Jay A. Walters; Masakazu Shiota; Owen P. McGuinness; David A. Jacobson; David W. Piston; John C. Hutton; David R. Powell; Richard M. O’Brien

Objective The SLC30A8 gene encodes the islet-specific transporter ZnT-8, which is hypothesized to provide zinc for insulin-crystal formation. A polymorphic variant in SLC30A8 is associated with altered susceptibility to type 2 diabetes. Several groups have examined the effect of global Slc30a8 gene deletion but the results have been highly variable, perhaps due to the mixed 129SvEv/C57BL/6J genetic background of the mice studied. We therefore sought to remove the conflicting effect of 129SvEv-specific modifier genes. Methods The impact of Slc30a8 deletion was examined in the context of the pure C57BL/6J genetic background. Results Male C57BL/6J Slc30a8 knockout (KO) mice had normal fasting insulin levels and no change in glucose-stimulated insulin secretion (GSIS) from isolated islets in marked contrast to the ∼50% and ∼35% decrease, respectively, in both parameters observed in male mixed genetic background Slc30a8 KO mice. This observation suggests that 129SvEv-specific modifier genes modulate the impact of Slc30a8 deletion. In contrast, female C57BL/6J Slc30a8 KO mice had reduced (∼20%) fasting insulin levels, though this was not associated with a change in fasting blood glucose (FBG), or GSIS from isolated islets. This observation indicates that gender also modulates the impact of Slc30a8 deletion, though the physiological explanation as to why impaired insulin secretion is not accompanied by elevated FBG is unclear. Neither male nor female C57BL/6J Slc30a8 KO mice showed impaired glucose tolerance. Conclusions Our data suggest that, despite a marked reduction in islet zinc content, the absence of ZnT-8 does not have a substantial impact on mouse physiology.


Handbook of experimental pharmacology | 2007

TRP channels of the pancreatic beta cell.

David A. Jacobson; Louis H. Philipson

Orchestrated ion fluctuations within pancreatic islets regulate hormone secretion and maybe essential to processes such as apoptosis. A diverse set of ion channels allows for islet cells to respond to a variety of signals and dynamically regulate hormone secretion and glucose homeostasis (reviewed by Houamed et al. 2004). This chapter focuses on transient receptor potential (TRP)-related channels found within the beta cells of the islet and reviews their roles in both insulin secretion and apoptosis.


Cell Metabolism | 2009

The granular chloride channel ClC-3 is permissive for insulin secretion.

Ludmila V. Deriy; Erwin A. Gomez; David A. Jacobson; Xueqing Wang; Jessika A. Hopson; Xiang Y. Liu; Guangping Zhang; Vytautas P. Bindokas; Louis H. Philipson; Deborah J. Nelson

Insulin secretion from pancreatic beta cells is dependent on maturation and acidification of the secretory granule, processes necessary for prohormone convertase cleavage of proinsulin. Previous studies in isolated beta cells revealed that acidification may be dependent on the granule membrane chloride channel ClC-3, in a step permissive for a regulated secretory response. In this study, immuno-EM of beta cells revealed colocalization of ClC-3 and insulin on secretory granules. Clcn3(-/-) mice as well as isolated islets demonstrate impaired insulin secretion; Clcn3(-/-) beta cells are defective in regulated insulin exocytosis and granular acidification. Increased amounts of proinsulin were found in the majority of secretory granules in the Clcn3(-/-) mice, while in Clcn3(+/+) cells, proinsulin was confined to the immature secretory granules. These results demonstrate that in pancreatic beta cells, chloride channels, specifically ClC-3, are localized on insulin granules and play a role in insulin processing as well as insulin secretion through regulation of granular acidification.


Islets | 2013

Ion channels and regulation of insulin secretion in human β-cells: A computational systems analysis

Leonid E. Fridlyand; David A. Jacobson; Louis H. Philipson

In mammals an increase in glucose leads to block of ATP dependent potassium channels in pancreatic β cells leading to membrane depolarization. This leads to the repetitive firing of action potentials that increases calcium influx and triggers insulin granule exocytosis. Several important differences between species in this process suggest that a dedicated human-oriented approach is advantageous as extrapolating from rodent data may be misleading in several respects. We examined depolarization-induced spike activity in pancreatic human islet-attached β-cells employing whole-cell patch-clamp methods. We also reviewed the literature concerning regulation of insulin secretion by channel activity and constructed a data-based computer model of human β cell function. The model couples the Hodgkin-Huxley-type ionic equations to the equations describing intracellular Ca2+ homeostasis and insulin release. On the basis of this model we employed computational simulations to better understand the behavior of action potentials, calcium handling and insulin secretion in human β cells under a wide range of experimental conditions. This computational system approach provides a framework to analyze the mechanisms of human β cell insulin secretion.


Diabetes, Obesity and Metabolism | 2007

Action potentials and insulin secretion: new insights into the role of Kv channels

David A. Jacobson; Louis H. Philipson

Coordinated electrical activity allows pancreatic β‐cells to respond to secretagogues with calcium entry followed by insulin secretion. Metabolism of glucose affects multiple membrane proteins including ion channels, transporters and pumps that collaborate in a cascade of electrical activity resulting in insulin release. Glucose induces β‐cell depolarization resulting in the firing of action potentials (APs), which are the primary electrical signal of the β‐cell. They are shaped by orchestrated activation of ion channels. Here we give an overview of the voltage‐gated potassium (Kv) channels of the β‐cell, which are responsible in part for the falling phase of the AP, and how their regulation affects insulin secretion. β cells contain several Kv channels allowing dynamic integration of multiple signals on repolarization of glucose‐stimulated APs. Recent studies on Kv channel regulation by cAMP and arachidonic acid and on the Kv2.1 null mouse have greatly increased our understanding of β‐cell excitation–secretion coupling.


Diabetes | 2013

G6PC2 A Negative Regulator of Basal Glucose-Stimulated Insulin Secretion

Lynley D. Pound; James K. Oeser; Tracy P. O’Brien; Yingda Wang; Chandler J. Faulman; Prasanna K. Dadi; David A. Jacobson; John C. Hutton; Owen P. McGuinness; Masakazu Shiota; Richard M. O’Brien

Elevated fasting blood glucose (FBG) is associated with increased risk for the development of type 2 diabetes and cardiovascular-associated mortality. Genome-wide association studies (GWAS) have linked polymorphisms in G6PC2 with variations in FBG and body fat, although not insulin sensitivity or glucose tolerance. G6PC2 encodes an islet-specific, endoplasmic reticulum–resident glucose-6-phosphatase catalytic subunit. A combination of in situ perfused pancreas, in vitro isolated islet, and in vivo analyses were used to explore the function of G6pc2 in mice. G6pc2 deletion had little effect on insulin sensitivity and glucose tolerance, whereas body fat was reduced in female G6pc2 knockout (KO) mice on both a chow and high-fat diet, observations that are all consistent with human GWAS data. G6pc2 deletion resulted in a leftward shift in the dose-response curve for glucose-stimulated insulin secretion (GSIS). As a consequence, under fasting conditions in which plasma insulin levels were identical, blood glucose levels were reduced in G6pc2 KO mice, again consistent with human GWAS data. Glucose-6-phosphatase activity was reduced, whereas basal cytoplasmic calcium levels were elevated in islets isolated from G6pc2 KO mice. These data suggest that G6pc2 represents a novel, negative regulator of basal GSIS that acts by hydrolyzing glucose-6-phosphate, thereby reducing glycolytic flux.


Journal of Biological Chemistry | 2014

Inhibition of Pancreatic β-Cell Ca2+/Calmodulin-dependent Protein Kinase II Reduces Glucose-stimulated Calcium Influx and Insulin Secretion, Impairing Glucose Tolerance

Prasanna K. Dadi; Nicholas C. Vierra; Alessandro Ustione; David W. Piston; Roger J. Colbran; David A. Jacobson

Background: Glucose activates CaMKII in β-cells, how this influences glucose homeostasis has not been determined. Results: Inhibiting CaMKII in mouse β-cells causes glucose intolerance by reducing Ca2+ entry and insulin secretion. Conclusion: CaMKII is a β-cell Ca2+ sensor that amplifies secretagogue-induced Ca2+ entry and insulin secretion to maintain glucose homeostasis. Significance: This provides the first evidence that β-cell CaMKII modulates glucose homeostasis under physiological and insulin resistant states. Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is caused by Ca2+ entry via voltage-dependent Ca2+ channels. CaMKII is a key mediator and feedback regulator of Ca2+ signaling in many tissues, but its role in β-cells is poorly understood, especially in vivo. Here, we report that mice with conditional inhibition of CaMKII in β-cells show significantly impaired glucose tolerance due to decreased GSIS. Moreover, β-cell CaMKII inhibition dramatically exacerbates glucose intolerance following exposure to a high fat diet. The impairment of islet GSIS by β-cell CaMKII inhibition is not accompanied by changes in either glucose metabolism or the activities of KATP and voltage-gated potassium channels. However, glucose-stimulated Ca2+ entry via voltage-dependent Ca2+ channels is reduced in islet β-cells with CaMKII inhibition, as well as in primary wild-type β-cells treated with a peptide inhibitor of CaMKII. The levels of basal β-cell cytoplasmic Ca2+ and of endoplasmic reticulum Ca2+ stores are also decreased by CaMKII inhibition. In addition, CaMKII inhibition suppresses glucose-stimulated action potential firing frequency. These results reveal that CaMKII is a Ca2+ sensor with a key role as a feed-forward stimulator of β-cell Ca2+ signals that enhance GSIS under physiological and pathological conditions.

Collaboration


Dive into the David A. Jacobson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Piston

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge