Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Kring is active.

Publication


Featured researches published by David A. Kring.


Geology | 1991

Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico

Alan R. Hildebrand; Glen T. Penfield; David A. Kring; Mark Pilkington; Z Antonio Camargo; Stein B. Jacobsen; William V. Boynton

We suggest that a buried 180-km-diameter circular structure on the Yucatan Peninsula, Mexico, is an impact crater. Its size and shape are revealed by magnetic and gravity-field anomalies, as well as by oil wells drilled inside and near the structure. The stratigraphy of the crater includes a sequence of andesitic igneous rocks and glass interbedded with, and overlain by, breccias that contain evidence of shock metamorphism. The andesitic rocks have chemical and isotopic compositions similar to those of tektites found in Cretaceous/Tertiary (K/T) ejecta. A 90-m-thick K/T boundary breccia, also containing evidence of shock metamorphism, is present 50 km outside the craters edge. This breccia probably represents the craters ejecta blanket. The age of the crater is not precisely known, but a K/T boundary age is indicated. Because the crater is in a thick carbonate sequence, shock-produced CO2 from the impact may have caused a severe greenhouse warming.


Science | 2010

The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary

Peter Schulte; Laia Alegret; Ignacio Arenillas; José Antonio Arz; Penny J. Barton; Paul R. Bown; Timothy J. Bralower; Gail L. Christeson; Philippe Claeys; Charles S. Cockell; Gareth S. Collins; Alexander Deutsch; Tamara Joan Goldin; Kazuhisa Goto; José Manuel Grajales-Nishimura; R. A. F. Grieve; Sean Paul Sandifer Gulick; Kirk R. Johnson; Wolfgang Kiessling; Christian Koeberl; David A. Kring; Kenneth G MacLeod; Takafumi Matsui; Jay Melosh; Alessandro Montanari; Joanna Morgan; Clive R. Neal; Douglas J. Nichols; Richard D. Norris; Elisabetta Pierazzo

The Fall of the Dinosaurs According to the fossil record, the rule of dinosaurs came to an abrupt end ∼65 million years ago, when all nonavian dinosaurs and flying reptiles disappeared. Several possible mechanisms have been suggested for this mass extinction, including a large asteroid impact and major flood volcanism. Schulte et al. (p. 1214) review how the occurrence and global distribution of a global iridium-rich deposit and impact ejecta support the hypothesis that a single asteroid impact at Chicxulub, Mexico, triggered the extinction event. Such an impact would have instantly caused devastating shock waves, a large heat pulse, and tsunamis around the globe. Moreover, the release of high quantities of dust, debris, and gases would have resulted in a prolonged cooling of Earths surface, low light levels, and ocean acidification that would have decimated primary producers including phytoplankton and algae, as well as those species reliant upon them. The Cretaceous-Paleogene boundary ~65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.


Science | 2005

The Origin of Planetary Impactors in the Inner Solar System

Robert G. Strom; Renu Malhotra; Takashi Ito; Fumi Yoshida; David A. Kring

Insights into the history of the inner solar system can be derived from the impact cratering record of the Moon, Mars, Venus, and Mercury and from the size distributions of asteroid populations. Old craters from a unique period of heavy bombardment that ended ∼3.8 billion years ago were made by asteroids that were dynamically ejected from the main asteroid belt, possibly due to the orbital migration of the giant planets. The impactors of the past ∼3.8 billion years have a size distribution quite different from that of the main belt asteroids but very similar to that of near-Earth asteroids.


Journal of Geophysical Research | 2005

Impact-induced hydrothermal activity on early Mars

Oleg V. Abramov; David A. Kring

[1] We report on numerical modeling results of postimpact cooling of craters with diameters of 30, 100, and 180 km in an early Martian environment, with and without the presence of water. The effects of several variables, such as ground permeability and the presence of a crater lake, were tested. Host rock permeability is the main factor affecting fluid circulation and lifetimes of hydrothermal systems, and several permeability cases were examined for each crater. The absence of a crater lake decreases the amount of circulating water and increases the system lifetime; however, it does not dramatically change the character of the system as long as the ground remains saturated. It was noted that vertical heat transport by water increases the temperature of localized near-surface regions and can prolong system lifetime, which is defined by maximum near-surface temperature. However, for very high permeabilities this effect is negated by the overall rapid cooling of the system. System lifetimes, which are defined by near-surface temperatures and averaged for all permeability cases examined, were 67,000 years for the 30-km crater, 290,000 years for the 100-km crater, and 380,000 for the 180-km crater. Also, an approximation of the thermal evolution of a Hellas-sized basin suggests potential for hydrothermal activity for ∼10 Myr after the impact. These lifetimes provide ample time for colonization of impact-induced hydrothermal systems by thermophilic organisms, provided they existed on early Mars. The habitable volume reaches a maximum of 6,000 km 3 8,500 years after the impact in the 180-km crater model.


Journal of Geophysical Research | 1998

Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases

Elisabetta Pierazzo; David A. Kring; H. Jay Melosh

We constructed a numerical model of the Chicxulub impact event using the Chart-D Squared (CSQ) code coupled with the ANalytic Equation Of State (ANEOS) package. In the simulations we utilized a target stratigraphy based on borehole data and employed newly developed equations of state for the materials that are believed to play a crucial role in the impact-related extinction hypothesis: carbonates (calcite) and evaporites (anhydrite). Simulations explored the effects of different projectile sizes (10 to 30 km in diameter) and porosity (0 to 50%). The effect of impact speed is addressed by doing simulations of asteroid impacts (vi = 20 km/s) and comet impacts (vi = 50 km/s). The masses of climatically important species injected into the upper atmosphere by the impact increase with the energy of the impact event, ranging from 350 to 3500 Gt for CO2, from 40 to 560 Gt for S, and from 200 to 1400 Gt for water vapor. While our results are in good agreement with those of Ivanov et al. [1996], our estimated CO2 production is 1 to 2 orders of magnitude lower than the results of Takata and Ahrens [1994], indicating that the impact event enhanced the end-Cretaceous atmospheric CO2 inventory by, at most, 40%. Consequently, sulfur may have been the most important climatically active gas injected into the stratosphere. The amount of S released by the impact is several orders of magnitude higher than any known volcanic eruption and, with H2O, is high enough to produce a sudden and significant perturbation of Earths climate.


Nature | 2014

Widespread mixing and burial of Earth/'s Hadean crust by asteroid impacts

S. Marchi; William F. Bottke; Linda T. Elkins-Tanton; M. Bierhaus; K. Wuennemann; Alessandro Morbidelli; David A. Kring

The history of the Hadean Earth (∼4.0–4.5 billion years ago) is poorly understood because few known rocks are older than ∼3.8 billion years old. The main constraints from this era come from ancient submillimetre zircon grains. Some of these zircons date back to ∼4.4 billion years ago when the Moon, and presumably the Earth, was being pummelled by an enormous flux of extraterrestrial bodies. The magnitude and exact timing of these early terrestrial impacts, and their effects on crustal growth and evolution, are unknown. Here we provide a new bombardment model of the Hadean Earth that has been calibrated using existing lunar and terrestrial data. We find that the surface of the Hadean Earth was widely reprocessed by impacts through mixing and burial by impact-generated melt. This model may explain the age distribution of Hadean zircons and the absence of early terrestrial rocks. Existing oceans would have repeatedly boiled away into steam atmospheres as a result of large collisions as late as about 4 billion years ago.


Journal of Geophysical Research | 1995

The dimensions of the Chicxulub impact crater and impact melt sheet

David A. Kring

The Chicxulub impact crater, which is the principal source of impact debris in Cretaceous-Tertiary boundary sediments, is currently buried by a ∼1 km thick sequence of carbonate sediments. Because the crater is not exposed for direct scrutiny, its size has remained uncertain, and in particular, estimates ranging from ∼100 to ∼300 km have been made on the basis of gravity and magnetic field data. In this study, the physical properties of the K/T boundary impact ejecta and Chicxulub impact melt sheet have been used to test the geophysical estimates of the impact craters size. On the basis of the measured thickness of impact ejecta in Haiti and North America, the calculated volume of the impact melt sheet, and the chemical and isotopic composition of the melt sheet, the Chicxulub impact crater is inferred to be ∼180 km in diameter and to contain a ∼3 to 7 km thick melt sheet and breccia sequence within a centrally located ∼100 km diameter region that corresponds to the limits of the transient cavity.


Journal of Geophysical Research | 1996

Cat Mountain: A meteoritic sample of an impact-melted asteroid regolith

David A. Kring; Timothy D. Swindle; Daniel T. Britt; Jennifer Ann Grier

Cat Mountain is a new ordinary chondrite impact melt breccia that contains several shocked chondrule-bearing clasts of L5 material. These clasts are surrounded by a total impact melt of similar composition material which appears to have cooled over a period of a few thousand years, probably within a melt breccia lens in the bottom of a large (>1 km diameter) crater on an L chondrite asteroid. Noble gas isotopes indicate that the sample was involved in at least two different impact events, approximately 880 and 20 Myr ago, following the 4.55 Ga accretion of primitive chondritic material. The 880 Ma event is responsible for the impact breccia texture of the sample, and the 20 Ma event reduced the sample to a meter-sized object. We also infer that another impact occurred between 880 and 20 Ma (possibly the ∼500 Ma event recorded in many other L chondrites) to jettison the material from the asteroid belt into an orbit that evolved into an Earth-crossing trajectory. The shock-metamorphic processes that occurred at 880 Ma redistributed the opaque phases in the meteorite and altered the crystalline characteristics of silicate phases. This reduced the reflectance of the L5 material and decreased the amplitude of its spectral absorption features. These characteristics are consistent with the spectral characteristics of some C class asteroids and suggest that some dark asteroids that appear to belong to the C class could be covered with shocked ordinary chondrite material. If one assumes that Cat Mountain came from the same asteroid as other L chondrites with the same cosmic ray exposure age, then the juxtaposition of these different materials suggests asteroids are rubble piles which are heterogeneous on a scale less than 100 m. Furthermore, the structural integrity of Cat Mountain and other L chondrites suggests the strengths of asteroid rubble piles are limited by fractures and contrasting material properties and are thus inherently weak in a ram pressure regime produced when they enter a planetary atmosphere. However, in a regime where the asteroid is the target of impact fragmentation rather than the projectile, the added porosity of a rubble pile structure will compensate for the presence of fractures and absorb a large amount of the impact energy. In this case the structural integrity of the asteroid may appear to be the same as a previously unshocked chondritic material.


Science | 2012

Direct detection of projectile relics from the end of the lunar basin–forming epoch

K. H. Joy; Michael E. Zolensky; Kazuhide Nagashima; Gary R. Huss; D. Kent Ross; David S. McKay; David A. Kring

The Rocks That Hit the Moon The cratered surface of the Moon bears witness to the numerous impacts it has suffered. Chemical signatures of these impacts have been detected indirectly. Now, Joy et al. (p. 1426, published online 17 May; see the Perspective by Rubin) report the detection and characterization of meteorite fragments preserved in ancient lunar regolith breccias from the Apollo 16 landing site. These meteoritic fragments represent direct samples of the population of small bodies traversing the inner solar system at around 3.4 billion years ago—the same time or just after the basin-forming epoch on the Moon. Analysis of lunar rocks from the Apollo missions reveals fragments from meteorites that hit the Moon in the ancient past. The lunar surface, a key proxy for the early Earth, contains relics of asteroids and comets that have pummeled terrestrial planetary surfaces. Surviving fragments of projectiles in the lunar regolith provide a direct measure of the types and thus the sources of exogenous material delivered to the Earth-Moon system. In ancient [>3.4 billion years ago (Ga)] regolith breccias from the Apollo 16 landing site, we located mineral and lithologic relics of magnesian chondrules from chondritic impactors. These ancient impactor fragments are not nearly as diverse as those found in younger (3.4 Ga to today) regolith breccias and soils from the Moon or that presently fall as meteorites to Earth. This suggests that primitive chondritic asteroids, originating from a similar source region, were common Earth-Moon–crossing impactors during the latter stages of the basin-forming epoch.


Geochimica et Cosmochimica Acta | 1997

Petrography and bulk chemistry of Martian orthopyroxenite ALH84001: Implications for the origin of secondary carbonates

James D. Gleason; David A. Kring; Dolores H. Hill; William V. Boynton

New petrologic and bulk geochemical data for the SNC-related (Martian) meteorite ALH84001 suggest a relatively simple igneous history overprinted by complex shock and hydrothermal processes. ALH84001 is an igneous orthopyroxene cumulate containing penetrative shock deformation textures and a few percent secondary extraterrestrial carbonates. Rare earth element (REE) patterns for several splits of the meteorite reveal substantial heterogeneity in REE abundances and significant fractionation of the REEs between crushed and uncrushed domains within the meteorite. Complex zoning in carbonates indicates nonequilibrium processes were involved in their formation, suggesting that CO2-rich fluids of variable composition infiltrated the rock while on Mars. We interpret petrographic textures to be consistent with an inorganic origin for the carbonate involving dissolution-replacement reactions between CO2-charged fluids and feldspathic glass in the meteorite. Carbonate formation clearly postdated processes that last redistributed the REE in the meteorite.

Collaboration


Dive into the David A. Kring's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Axel D. Wittmann

Lunar and Planetary Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge