Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Lockington is active.

Publication


Featured researches published by David A. Lockington.


Journal of Hydrology | 1999

Tidal effects on sea water intrusion in unconfined aquifers

Behzad Ataie-Ashtiani; R. E. Volker; David A. Lockington

A variable-density groundwater model is used to analyse the effects of tidal fluctuations on sea-water intrusion in an unconfined aquifer. It is shown that the tidal activity forces the sea-water to intrude further inland and it also creates a thicker interface than would occur without tidal effects. Moreover, the configuration of the interface is radically changed when the tidal fluctuations are included. This is because of the dramatic changes in the flow pattern and velocity of the groundwater near the shoreline. For aquifer depths much larger than tidal amplitudes, the tidal fluctuation does not have much effect on how far the sea-water intrudes into the aquifer; nevertheless, a significant change in the configuration of concentration contours because of the effect of tidal fluctuations is observed. This change is more noticeable at the top of the aquifer, near the water table, than at the bottom of the aquifer, and is caused by the infiltration of salt water into the top of the aquifer at higher tidal levels. A flatter beach slope, therefore, intensifies this phenomenon. The interface configurations do not change noticeably over the course of a tidal cycle. Neglecting tidal fluctuation effects results in an inaccurate evaluation of the water table elevation at the land end of the aquifer, although no distinguishable difference is seen between the water tables near the shoreline. Where the landward boundary condition is a constant head, the effects of tidal fluctuations on sea-water intrusion are more pronounced than for cases where the landward boundary condition is a specified flux. Also it is shown that the effects of tidal fluctuations are more significant for a sloping beach than for a vertical shoreline and the salt water intrudes further inland for the sloping case


Journal of Sustainable Tourism | 2007

Concepts and tools for comprehensive sustainability assessments for tourism destinations: a comparative review

Karin Schianetz; Lydia Kavanagh; David A. Lockington

This paper reviews a wide range of tools for comprehensive sustainability assessments at whole tourism destinations, covering sociocultural, economic and environmental issues. It considers their strengths, weaknesses and site-specific applicability. It is intended to facilitate their selection (and combination where necessary). Tools covered include Sustainability Indicators, Environmental Impact Assessment, Life Cycle Assessment, Environmental Audits, Ecological Footprints, Multi-Criteria Analysis and Adaptive Environmental Assessment. Guidelines for evaluating their suitability for specific sites and situations are given as well as examples of their use.


Journal of Physics D | 2003

Anomalous water absorption in porous materials

David A. Lockington; J.-Y. Parlange

The absorption of fluid by unsaturated, rigid porous materials may be characterized by the sorptivity. This is a simple parameter to determine and is increasingly being used as a measure of a materials resistance to exposure to fluids (especially moisture and reactive solutes) in aggressive environments. The complete isothermal absorption process is described by a nonlinear diffusion equation, with the hydraulic diffusivity being a strongly nonlinear function of the degree of saturation of the material. This diffusivity can be estimated from the sorptivity test. In a typical test the cumulative absorption is proportional to the square root of time. However, a number of researchers have observed deviation from this behaviour when the infiltrating fluid is water and there is some potential for chemo-mechanical interaction with the material. In that case the current interpretation of the test and estimation of the hydraulic diffusivity is no longer appropriate. Kuntz and Lavallee (2001) discuss the anomalous behaviour and propose a non-Darcian model as a more appropriate physical description. We present an alternative Darcian explanation and theory that retrieves the earlier advantages of the simple sorptivity test in providing parametric information about the materials hydraulic properties and allowing simple predictive formulae for the wetting profile to be generated.


Journal of Hydrology | 1999

Numerical and experimental study of seepage in unconfined aquifers with a periodic boundary condition

Behzad Ataie-Ashtiani; R. E. Volker; David A. Lockington

The assessment of groundwater conditions within an unconfined aquifer with a periodic boundary condition is of interest in many hydrological and environmental problems. A two-dimensional numerical model for density dependent variably saturated groundwater flow, SUTRA (Voss, C.I., 1984. SUTRA: a finite element simulation model for saturated-unsaturated, fluid-density dependent ground-water flow with energy transport or chemically reactive single species solute transport. US Geological Survey, National Center, Reston, VA) is modified in order to be able to simulate the groundwater flow in unconfined aquifers affected by a periodic boundary condition. The basic flow equation is changed from pressure-form to mixed-form. The model is also adjusted to handle a seepage-face boundary condition. Experiments are conducted to provide data for the groundwater response to the periodic boundary condition for aquifers with both vertical and sloping faces. The performance of the numerical model is assessed using those data. The results of pressure- and mixed-form approximations are compared and the improvement achieved through the mixed-form of the equation is demonstrated. The ability of the numerical model to simulate the water table and seepage-face is tested by modelling some published experimental data. Finally the numerical model is successfully verified against present experimental results to confirm its ability to simulate complex boundary conditions like the periodic head and the seepage-face boundary condition on the sloping face


Advances in Environmental Research | 2002

Experimental investigation of contaminant transport in coastal groundwater

Qi Zhang; R. E. Volker; David A. Lockington

Contaminant transport in coastal aquifers is of increasing interest since, with the development of coastal areas, contaminants from surface sources may enter coastal aquifers and pollute the groundwater flow. Coastal groundwater flow is complicated because of the presence of a freshwater-saltwater diffusion zone and the tidal variation of sea level at the seaward end. This paper investigates experimentally the behaviour of contaminant plumes with different densities in an unconfined coastal aquifer. Experiments were performed in a flow tank filled with glass beads as the porous medium. Results show that the dense contaminant has a more diffusive front than the less dense one in the seaward direction towards the coastline. The plume becomes more diffusive when it travels closer to the saltwater interface. On the contrary, the less dense contaminant presents a relatively sharp outline. It tends to migrate in the upper portion of the aquifer and exits in a concentrated manner over a small discharge area at the coastline, not further seaward under the sea. Non-dimensional parameters show that instabilities occur in our experiments for a density difference of 1.2% or larger between the contaminant and the ambient water. The experimental results provide guidance for field monitoring and numerical modelling


Advances in Water Resources | 2000

Similarity solution of the Boussinesq equation

David A. Lockington; J.-Y. Parlange; Marc B. Parlange; John S. Selker

Similarity transforms of the Boussinesq equation in a semi-infinite medium are available when the boundary conditions are a power of time. The Boussinesq equation is reduced from a partial diAerential equation to a boundary-value problem. Chen et al. [Trans Porous Media 1995;18:15‐36] use a hodograph method to derive an integral equation formulation of the new diAerential equation which they solve by numerical iteration. In the present paper, the convergence of their scheme is improved such that numerical iteration can be avoided for all practical purposes. However, a simpler analytical approach is also presented which is based on Shampine’s transformation of the boundary value problem to an initial value problem. This analytical approximation is remarkably simple and yet more accurate than the analytical hodograph approximations. ” 2000 Elsevier Science Ltd. All rights reserved.


Journal of Hydrology | 1999

A mathematical model for estimating the extent of solute- and water-flux heterogeneity in multiple sample percolation experiments

Frank Stagnitti; Ling Li; G. Allinson; Ian Phillips; David A. Lockington; A. Zeiliguer; Mayumi Allinson; J. Lloyd‐Smith; M. Xie

Multiple sampling is widely used in vadose zone percolation experiments to investigate the extent in which soil structure heterogeneities influence the spatial and temporal distributions of water and solutes. In this note, a simple, robust, mathematical model, based on the beta-statistical distribution, is proposed as a method of quantifying the magnitude of heterogeneity in such experiments. The model relies on fitting two parameters, alpha and zeta to the cumulative elution curves generated in multiple-sample percolation experiments. The model does not require knowledge of the soil structure. A homogeneous or uniform distribution of a solute and/or soil-water is indicated by alpha = zeta = 1, Using these parameters, a heterogeneity index (HI) is defined as root 3 times the ratio of the standard deviation and mean. Uniform or homogeneous flow of water or solutes is indicated by HI = 1 and heterogeneity is indicated by HI > 1. A large value for this index may indicate preferential flow. The heterogeneity index relies only on knowledge of the elution curves generated from multiple sample percolation experiments and is, therefore, easily calculated. The index may also be used to describe and compare the differences in solute and soil-water percolation from different experiments. The use of this index is discussed for several different leaching experiments


Journal of Contaminant Hydrology | 2001

Influence of seaward boundary condition on contaminant transport in unconfined coastal aquifers

Qi Zhang; R. E. Volker; David A. Lockington

Contaminant transport in coastal aquifers is complicated partly due to the conditions at the seaward boundary including seawater intrusion and tidal variations of sea level. Their inclusion in modelling this system will be computationally expensive. Therefore, it will be instructive to investigate the consequence of simplifying the seaward boundary condition by neglecting the seawater density and tidal variations in numerical predictions of contaminant transport in this zone. This paper presents a comparison of numerical predictions for a simplified seaward boundary condition with experimental results for a corresponding realistic one including a saltwater interface and tidal variations. Different densities for contaminants are considered. The comparison suggests that the neglect of the seawater intrusion and tidal variations does not affect noticeably the overall migration rate of the plume before it reaches the saltwater interface. However, numerical prediction shows that a more dense contaminant travels further seaward and part of the solute mass exits under the sea if the seawater density is not included. This is not consistent with the experimental result, which shows that the contaminant travels upwards to the shoreline along the saltwater interface. Neglect of seawater density, therefore, will result in an underestimation of the exit rate of solute mass around the coastline and fictitious migration paths under the seabed. For a less dense contaminant, neglect of seawater density has little effect on numerical prediction of migration paths.


Transport in Porous Media | 2000

On an exact analytical solution of the Boussinesq equation

J.-Y. Parlange; W. L. Hogarth; Rao S. Govindaraju; Marc B. Parlange; David A. Lockington

A useful exact analytical solution of the Boussinesq equation is discussed and is the most general solution presently available, and in particular yields a solution for a finite aquifer. It provides insight into the physical processes arising during the exchange of water between an aquifer and a free body of water of varying height as an application and extension of Barenblatts solution. We also illustrate the value of such a solution to check numerical and approximate schemes.


Journal of Contaminant Hydrology | 1999

Truncation errors in finite difference models for solute transport equation with first-order reaction

Behzad Ataie-Ashtiani; David A. Lockington; R. E. Volker

The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. Tn particular it is shown that the Crank-Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection-dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution

Collaboration


Dive into the David A. Lockington's collaboration.

Top Co-Authors

Avatar

Ling Li

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrien Guyot

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

R. E. Volker

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge