Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Mann is active.

Publication


Featured researches published by David A. Mann.


Journal of Food Protection | 2010

Factors Affecting Infiltration and Survival of Salmonella on In-Shell Pecans and Pecan Nutmeats

Larry R. Beuchat; David A. Mann

A study was done to determine the infiltration and survival characteristics of Salmonella in pecans. The rate of infiltration of water into in-shell nuts varied among six varieties evaluated and was significantly (alpha = 0.05) affected by the extent of shell damage. The rate of infiltration at -20 or 4 degrees C was lower than the rate of infiltration into nuts at 21 or 37 degrees C when nuts were immersed in water at 21 degrees C. In-shell nuts immersed in a suspension of Salmonella (8.66 or 2.82 log CFU/ml) for 1 h contained populations of 6.94 to 6.99 and 1.85 to 1.95 log CFU/g, respectively. Salmonella that infiltrated in-shell nuts reached the kernel and remained viable after drying and during subsequent storage at 4 degrees C. Initially high (5.78 log CFU/g) and low (1.53 log CFU/g) populations of Salmonella did not significantly decrease in in-shell pecans stored at -20 and 4 degrees C for 78 weeks (18 months). Significant reductions of 2.49 and 3.29 log CFU/g occurred in in-shell nuts stored for 78 weeks at 21 and 37 degrees C, respectively. High (6.16 log CFU/g) and low (2.56 log CFU/g) populations on pecan halves and high (7.13 log CFU/g) and low (4.71 log CFU/g) populations on medium pieces stored for 52 weeks at -20 and 4 degrees C decreased slightly, but not always significantly. Significant reductions occurred on nutmeats stored for 52 weeks at 21 and 37 degrees C, but the pathogen was detectable, regardless of the initial inoculum level. Results emphasize the importance of applying process treatments that will inactivate Salmonella.


Journal of Food Protection | 2008

Survival and Growth of Acid-Adapted and Unadapted Salmonella in and on Raw Tomatoes as Affected by Variety, Stage of Ripeness, and Storage Temperature

Larry R. Beuchat; David A. Mann

Consumption of raw round and Roma tomatoes has been associated with outbreaks of salmonellosis. A study was done to determine whether survival and growth of Salmonella in and on tomatoes is affected by variety of tomato, stage of ripeness, and storage temperature. The influence of acid adaptation of cells and site of inoculation on survival and growth was studied. Salmonella grew in stem scar and pulp tissues of round, Roma, and grape tomatoes stored at 12 and 21 degrees C but not in those tomatoes stored at 4 degrees C. Survival and growth was largely unaffected by variety and stage of ripeness at the time of inoculation. The pathogen did not grow on the skin of grape tomatoes stored at 4, 12, and 21 degrees C. Survival and growth of Salmonella inoculated into stem scar and pulp tissues of round and Roma tomatoes were unaffected by exposure of cells to an acidic (pH 4.75) environment before inoculation. Results emphasize the importance of preventing contamination of tomatoes with Salmonella at all stages of ripeness, regardless of variety or previous exposure of cells to an acidic environment.


Journal of Food Protection | 2011

Inactivation of Salmonella on Pecan Nutmeats by Hot Air Treatment and Oil Roasting

Larry R. Beuchat; David A. Mann

Studies were done to determine the effectiveness of hot air drying, dry roasting, and oil roasting in killing Salmonella on pecan nutmeats. Pecan halves and pieces were inoculated by immersion in a five-serotype suspension of Salmonella or by surface application of powdered chalk containing the pathogen. Hot air treatment of low-moisture (2.8 to 4.1%) and high-moisture (10.5 to 11.2%) immersion-inoculated nutmeats (initial population, 6.18 to 7.16 log CFU/g) at 120°C for 20 min reduced the number of Salmonella by 1.18 to 1.26 and 1.89 to 2.04 log CFU/g, respectively. However, regardless of the moisture content, hot air treatment of pecan halves containing 0.77 log CFU/g at 120°C for 20 min failed to eliminate Salmonella. Reductions were >7 log CFU/g when dry pieces were dry roasted at 160°C for 15 min. Treatment of halves at 140°C for 20 min, 150°C for 15 min, or 170°C for 10 min reduced Salmonella by 5 log CFU/g. The pathogen was slightly more heat resistant in immersion-inoculated nutmeats than on surface-inoculated nutmeats. Exposure of immersion-inoculated pieces to peanut oil at 127°C for 1.5 min or 132°C for 1.0 min reduced the number of Salmonella by 5 log CFU/g. Treatment of halves at 138°C for 2.0 min reduced Salmonella by 5 log CFU/g; treatment at 132°C for 2.5 to 4.0 min did not always achieve this reduction. Hot air treatment cannot be relied upon to reduce Salmonella by 5 log CFU/g of raw pecan nutmeats without changing sensory qualities. Treatment temperatures and times typically used to oil roast nutmeats appear to be sufficient to reduce Salmonella by 5 log CFU/g.


Journal of Food Protection | 2010

Survival and growth of salmonella in high-moisture pecan nutmeats, in-shell pecans, inedible nut components, and orchard soil.

Larry R. Beuchat; David A. Mann

Outbreaks of salmonellosis associated with almonds have raised interest in better understanding the behavior of Salmonella on other tree nuts. We undertook a study to determine the survival and growth characteristics of Salmonella on high-moisture (water activity of 0.96 to 0.99) pecan nutmeats, in-shell pecans, and inedible components (shuck, shell, and middle septum tissue) of in-shell pecans. Salmonella did not grow on high-moisture nutmeat halves, pieces, or granules stored at 4°C for up to 48 h. Growth did occur, however, at 21, 30, and 37°C. Increases of 1.77 to 5.87 log CFU/g of nutmeats occurred within 48 h at 37°C; the order in which nutmeats supported growth was granules > pieces > halves. Populations of Salmonella on and in high-moisture in-shell pecans (kernel water activity of 0.94) stored at 4, 21, 30, and 37°C for 8 days decreased by 0.52 to 1.19 log CFU/g. The pathogen grew on the surface of high-moisture (water activity of 0.99) pecan shucks and shells but died on middle septum tissue stored at 21, 30, and 37°C for up to 6 days. Salmonella died in water extracts of shucks and in pecan orchard soil saturated with water or shuck extract, but survived well for at least 18 weeks in dry soil. The ability of the pathogen to grow on high-moisture nutmeats and some of the inedible components of pecans emphasizes the importance of controlling or limiting the time pecans are exposed to water in preharvest and postharvest environments.


Journal of Food Protection | 2011

Inactivation of Salmonella on in-shell pecans during conditioning treatments preceding cracking and shelling.

Larry R. Beuchat; David A. Mann

Studies were done to determine the effectiveness of conditioning treatments for killing Salmonella in and on immersion-inoculated and surface-inoculated in-shell pecans. Treatment of immersion-inoculated, dried, stored pecans in chlorinated water (400 μg/ml) reduced Salmonella by not more than 1.6 log CFU/g. Treatment of immersion-inoculated, dried, stored pecans in chlorinated water (200 μg/ml, 1 min) followed by soaking in water for 2 h at 21°C and treating for 10 min in water at 85 to 95°C reduced Salmonella by >5.12 log CFU/g; treatment of nuts containing a low population of Salmonella (<0.60 log CFU/g) for 15 min at 90°C failed to eliminate the pathogen. Reductions of ≥6.42 log CFU/g were achieved by treating surface-inoculated nuts in water at 90 or 95°C for 80 s; treatment of nuts containing 1.78 log CFU/g at 95°C for 10 min did not eliminate the pathogen. Salmonella on surface-inoculated in-shell pecans (kernel moisture, 4.75%; water activity, 0.62) that had been dried and stored at 4°C for 3 to 5 weeks was more resistant to conditioning treatments than was Salmonella on surface-inoculated pecans (kernel moisture, 5.60%; water activity, 0.73) that were not thoroughly dried. Conditioning treatments were less effective for killing Salmonella on immersion-inoculated pecans than on surface-inoculated pecans. Response of Salmonella to conditioning treatments varied, depending on the method of inoculation and whether nuts were dried and stored between the time of inoculation and treatment, which emphasizes the importance of following practices commonly used by commercial pecan shellers when validating the lethality of conditioning treatments.


Journal of Food Protection | 2012

Viability of Salmonella and Listeria monocytogenes in delicatessen salads and hummus as affected by sodium content and storage temperature.

Walid Q. Alali; David A. Mann; Larry R. Beuchat

A study was conducted to determine survival and growth behavior of Salmonella and Listeria monocytogenes in commercially prepared mayonnaise-based potato salad, macaroni salad, and coleslaw and in hummus (initial mean pH values were 4.80 to 4.94, 4.18 to 4.31, 3.87, and 4.50 to 4.52, respectively) as affected by sodium concentration (133 to 364, 190 to 336, 146 to 272, and 264 to 728 mg/100 g, respectively) and storage at 4 or 10°C for up to 27 days. Salmonella did not grow in any of the test products. Initial populations (2.02 to 2.38 log CFU/g) decreased in coleslaw to undetectable levels (<1 CFU/25 g) within 13 days and in most formulations of macaroni salad within 20 to 27 days. Salmonella survived in highest numbers in potato salad and hummus. The presence of added sodium in macaroni salad stored at 4°C and hummus stored at 4 or 10°C appeared to protect Salmonella against inactivation. L. monocytogenes, at an initial population of 1.86 to 2.23 log CFU/g, did not grow in test products, but with the exception of coleslaw containing sodium at a concentration used in the standard (control) recipe, this pathogen was detected by direct plating (≥ 1.0 log CFU/g) in all products stored at 4 or 10°C for 27 days. L. monocytogenes populations were significantly (P < 0.05) lower in potato salad and hummus with no added sodium than in test products with added sodium after storage at 4°C. Sodium concentration did not markedly affect aerobic plate counts over the 27-day storage period. Results confirm that the acidic pH of mayonnaise-based salads and hummus is a major factor preventing growth and influencing rates of inactivation of Salmonella and L. monocytogenes. In the absence of added sodium, death of these bacteria may be more rapid. However, in general decreasing or increasing the sodium concentration in selected delicatessen salad and hummus recipes does not markedly affect the behavior of Salmonella and L. monocytogenes when products are stored at 4 or 10°C for up to 27 days.


Journal of Food Protection | 2012

Evaluation of sanitizers for inactivating Salmonella on in-shell pecans and pecan nutmeats.

Larry R. Beuchat; David A. Mann; Walid Q. Alali

Chlorine, organic acids, and water extracts of inedible pecan components were tested for effectiveness in killing Salmonella on pecans. In-shell pecans and nutmeats (U.S. Department of Agriculture medium pieces) were immersion inoculated with a mixture of five Salmonella serotypes, dried to 3.7% moisture, and stored at 4°C for 3 to 6 weeks. In-shell nuts were immersed in chlorinated water (200, 400, and 1,000 μg/ml), lactic acid (0.5, 1, and 2%), and levulinic acid (0.5, 1, and 2%) with and without 0.05% sodium dodecyl sulfate (SDS), and a mixed peroxyacid sanitizer (Tsunami 200, 40 μg/ml) for up to 20 min at 21°C. The rate of reduction of free chlorine in conditioning water decreased as the ratio of in-shell nuts/water was increased. The rate of reduction was more rapid when nuts were not precleaned before treatment. The initial population of Salmonella on in-shell nuts (5.9 to 6.3 log CFU/g) was reduced by 2.8 log CFU/g after treating with chlorinated water (1,000 μg/ml). Treatment with 2% lactic acid plus SDS or 2% levulinic acid plus SDS reduced the pathogen by 3.7 and 3.4 log CFU/g, respectively. Lactic and levulinic acids (2%) without SDS were less effective (3.3- and 2.1-log CFU/g reductions, respectively) than acids with SDS. Treatment with Tsunami 200 resulted in a 2.4-log CFU/g reduction. In-shell nuts and nutmeats were immersed in water extracts of ground pecan shucks (hulls), shells, a mixture of shells and pith, and pith. The general order of lethality of extracts to Salmonella was shuck < shell-pith ≤ shell ≤ pith < chlorine (400 μg/ml) and shuck < shell ≤ pith = shell-pith < chlorine (400 μg/ml). Results emphasize the importance of removing soil and dust on in-shell pecans before conditioning in chlorinated water and the need for sanitizers with increased effectiveness in killing Salmonella on pecans.


Journal of Food Protection | 2013

Efficacy of Sanitizers in Reducing Salmonella on Pecan Nutmeats During Cracking and Shelling

Larry R. Beuchat; David A. Mann; Walid Q. Alali

Studies were done to evaluate the efficacy of chlorine (200 to 1,000 μg/ml), lactic acid (0.5 to 2%), levulinic acid (0.5 to 2%), sodium dodecyl sulfate (SDS, 0.05%), lactic acid plus SDS, levulinic acid plus SDS, and a mixed peroxyacid sanitizer (Tsunami 200, 40 and 80 μg/ml) in killing Salmonella on or in immersion- and on surface-inoculated pecan nutmeats (U.S. Department of Agriculture medium pieces and mammoth halves). The addition of SDS to treatment solutions containing lactic acid or levulinic acid resulted in generally higher reductions of Salmonella, but differences in these reductions were not always significant. Lactic and levulinic acids (2%) containing SDS (0.05%) were equivalent in killing Salmonella on immersion-inoculated nutmeats. Tsunami 200 (40 μg/ml) was less lethal or equivalent to 1 or 2% lactic and levulinic acids, with or without 0.05% SDS. Reductions did not exceed 1.1 log CFU/g of immersion-inoculated pieces and halves, regardless of sanitizer concentration or treatment time (up to 20 min). Reductions on surface-inoculated pieces and halves were 0.7 to 2.6 log CFU/g and 1.2 to 3.0 log CFU/g, respectively. Treatment with 2% lactic acid plus SDS (0.05%) and Tsunami (80 μg/ml) was most effective in killing Salmonella on surface-inoculated pieces; treatment of halves with chlorine (1,000 μg/ml) or lactic acid (1 or 2%), with or without SDS, was most efficacious. Exposure of immersion-inoculated pecan pieces to chlorine (200 μg/ml), lactic acid (2%) and levulinic acid (2%) with or without SDS, and Tsunami (80 μg/ml) during intermittent vacuum (18 ± 2 mbar) and ambient atmospheric pressure treatments for up to 20 min reduced Salmonella by only 0.1 to 1.0 log CFU/g. These studies emphasize the importance of preventing contamination of pecan nutmeats with Salmonella. Once nuts are contaminated, the lethality of sanitizers tested in this study is minimal.


Journal of Food Protection | 2015

Survival of Salmonella in Cookie and Cracker Sandwiches Containing Inoculated, Low–Water Activity Fillings

Larry R. Beuchat; David A. Mann

A study was done to determine the rate of inactivation of Salmonella in cookie and cracker snack sandwiches. Two cookie bases (chocolate and vanilla) and cheese crackers, along with high-sugar chocolate and peanut butter-based crème cookie fillings and peanut butter- and cheese-based cracker fillings, were obtained from commercial sources. Fillings and sandwiches containing fillings that had been dry- or wet-inoculated with Salmonella were stored at 25°C for 1, 6, 21, 35, 70, 112, and 182 days (6 months). At initial populations of 3.4 and 3.6 log CFU/g of cookie sandwiches containing chocolate crème and peanut butter crème fillings, respectively, Salmonella survived for at least 182 days; initially at 0.36 log CFU/g, the pathogen survived for at least 35 and 70 days. Initially at 2.9 and 3.4 log CFU/g of cracker sandwiches containing peanut butter- and cheese-based fillings, respectively, Salmonella survived for at least 182 and 112 days; initially at 0.53 log CFU/g, the pathogen survived for at least 6 and 35 days. Inactivation of Salmonella was more rapid in wet-inoculated peanut butter crème cookie filling than in dry-inoculated filling but was less affected by type of inoculum in peanut butter-based cracker filling. Chocolate cookie base (water activity [aw] 0.39) and chocolate crème filling (aw 0.30) components of sandwiches equilibrated to aw 0.38 within 15 days at 25°C; vanilla cookie base (aw 0.21) and peanut butter-based crème filling (aw 0.27) equilibrated to aw 0.24 between 50 and 80 days. Cheese cracker (aw 0.14) and peanut butter-based filling (aw 0.31) or cheese-based filling (aw 0.33) components of sandwiches equilibrated to aw 0.33 in 80 days. The ability of Salmonella to survive for at least 182 days in fillings of cookie and cracker sandwiches demonstrates a need to assure that filling ingredients do not contain the pathogen and that contamination does not occur during manufacture.


Journal of Food Protection | 2007

Comparison of Dry Sheet Media and Conventional Agar Media Methods for Enumerating Yeasts and Molds in Food

Larry R. Beuchat; David A. Mann; Joshua B. Gurtler

A study was done to compare Nissui Compact Dry Yeast and Mold plates (CDYM), 3M Petrifilm Yeast and Mold count plates (PYM), dichloran-rose bengal chloramphenicol (DRBC) agar, and dichloran 18% glycerol (DG18) agar for enumerating yeasts and molds naturally occurring in 97 foods (grains, legumes, raw fruits and vegetables, nuts, dairy products, meats, and miscellaneous processed foods and dry mixes). Correlation coefficients for plates incubated for 5 days were DG18 versus DRBC (0.93), PYM versus DRBC (0.81), CDYM versus DG18 (0.81), PYM versus DG18 (0.80), CDYM versus DRBC (0.79), and CDYM versus PYM (0.75). The number of yeasts and molds recovered from a group of foods (n = 32) analyzed on a weight basis (CFU per gram) was not significantly different (alpha = 0.05) when samples were plated on DRBC, DG18, PYM, or CDYM. However, the order of recovery from foods (n = 65) in a group analyzed on a unit or piece basis, or a composite of both groups (n = 97), was DRBC > DG18 = CDYM > PYM. Compared with PYM, CDYM recovered equivalent, significantly higher (alpha = 0.05) or significantly lower (alpha = 0.05) numbers of yeasts and molds in 51.5, 27.8, and 20.6%, respectively, of the 97 foods tested; respective values were 68.8, 15.6, and 15.6% in the small group (n = 32) and 43.1, 33.8, and 23.1% in the large group (n = 65) of foods. The two groups contained different types of foods, the latter consisting largely (73.8%) of raw fruits (n = 16) and vegetables (n = 32). Differences in efficacy of the four methods in recovering yeasts and molds from foods in the two groups are attributed in part to differences in genera and predominant mycoflora. While DG18 agar, CDYM, and PYM appear to be acceptable for enumerating yeasts and molds in the foods analyzed in this study, overall, DRBC agar recovered higher numbers from the 97 test foods, thereby supporting its recommended use as a general purpose medium for mycological analysis.

Collaboration


Dive into the David A. Mann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua B. Gurtler

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge