David A. Menassa
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David A. Menassa.
The FASEB Journal | 2012
Dzh Levett; Elizabeth J. Radford; David A. Menassa; Ef Graber; Andrea J. Morash; Hans Hoppeler; K Clarke; Daniel S. Martin; Anne C. Ferguson-Smith; Hugh Montgomery; Mpw Grocott; Andrew J. Murray
Ascent to high altitude is associated with a fall in the partial pressure of inspired oxygen (hypobaric hypoxia). For oxidative tissues such as skeletal muscle, resultant cellular hypoxia necessitates acclimatization to optimize energy metabolism and restrict oxidative stress, with changes in gene and protein expression that alter mitochondrial function. It is known that lowlanders returning from high altitude have decreased muscle mitochondrial densities, yet the underlying transcriptional mechanisms and time course are poorly understood. To explore these, we measured gene and protein expression plus ultrastructure in muscle biopsies of lowlanders at sea level and following exposure to hypobaric hypoxia. Subacute exposure (19 d after initiating ascent to Everest base camp, 5300 m) was not associated with mitochondrial loss. After 66 d at altitude and ascent beyond 6400 m, mitochondrial densities fell by 21%, with loss of 73% of subsarcolemmal mitochondria. Correspondingly, levels of the transcriptional coactivator PGC‐1α fell by 35%, suggesting down‐regulation of mitochondrial biogenesis. Sustained hypoxia also decreased expression of electron transport chain complexes I and IV and UCP3 levels. We suggest that during subacute hypoxia, mitochondria might be protected from oxidative stress. However, following sustained exposure, mitochondrial biogenesis is deactivated and uncoupling down‐regulated, perhaps to improve the efficiency of ATP production.—Levett, D. Z., Radford, E. J., Menassa, D. A., Graber, E. F., Morash, A. J., Hoppeler, H., Clarke, K., Martin, D. C., Ferguson‐Smith, A. C., Montgomery, H. E., Grocott, M. P. W., Murray, A. J., Caudwell Xtreme Everest Research Group. Acclimatization of skeletal muscle mitochondria to high‐altitude hypoxia during an ascent of Everest. FASEB J. 26, 1431‐1441 (2012). www.fasebj.org
Scientific Reports | 2017
Tom Phillips; Hannah Scott; David A. Menassa; Ashleigh L. Bignell; Aman Sood; Jude S. Morton; Takami Akagi; Koki Azuma; Mark F. Rogers; Catherine Gilmore; Gareth J. Inman; Simon Grant; Yealin Chung; Mais M. Aljunaidy; Christy Lynn Cooke; Bruno R. Steinkraus; Andrew Pocklington; Angela Logan; Gavin P. Collett; Helena Kemp; Peter Holmans; Michael P. Murphy; Tudor A. Fulga; Andrew M. Coney; Mitsuru Akashi; Sandra T. Davidge; C. Patrick Case
Some neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease. Exposure of cultured neurons to fetal plasma or to secretions from the placenta or from model trophoblast barriers that had been exposed to altered oxygenation caused similar morphological changes. The secretions and plasma contained altered microRNAs whose targets were linked with changes in gene expression in the fetal brain and with human schizophrenia loci. Molecular and morphological changes in vivo and in vitro were prevented by a single dose of MitoQ bound to nanoparticles, which were shown to localise and prevent oxidative stress in the placenta but not in the fetus. We suggest the possibility of developing preventative treatments that target the placenta and not the fetus to reduce risk of psychiatric disease in later life.
Neuron | 2018
John M. Dawes; Greg A. Weir; Steven J. Middleton; Ryan Patel; Kim I. Chisholm; Liam J. Peck; Joseph Sheridan; Akila Shakir; Leslie Jacobson; Maria Gutierrez-Mecinas; J Galino; Jan Walcher; Johannes Kühnemund; Hannah Kuehn; Maria D. Sanna; Bethan Lang; Alex J. Clark; Andreas C. Themistocleous; Noboru Iwagaki; Steven West; Karolina Werynska; Liam Carroll; Teodora Trendafilova; David A. Menassa; Maria Pia Giannoccaro; Ester Coutinho; Ilaria Cervellini; Damini Tewari; Camilla Buckley; M. Isabel Leite
Summary Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2−/−) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2−/− mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability.
Acta Neuropathologica | 2017
Ester Coutinho; David A. Menassa; Leslie Jacobson; Steven West; Joana Domingos; Teresa Moloney; Bethan Lang; Paul J. Harrison; David L. Bennett; David M. Bannerman; Angela Vincent
Gestational transfer of maternal antibodies against fetal neuronal proteins may be relevant to some neurodevelopmental disorders, but until recently there were no proteins identified. We recently reported a fivefold increase in CASPR2-antibodies in mid-gestation sera from mothers of children with intellectual and motor disabilities. Here, we exposed mice in utero to purified IgG from patients with CASPR2-antibodies (CASPR2-IgGs) or from healthy controls (HC-IgGs). CASPR2-IgG but not HC-IgG bound to fetal brain parenchyma, from which CASPR2-antibodies could be eluted. CASPR2-IgG exposed neonates achieved milestones similarly to HC-IgG exposed controls but, when adult, the CASPR2-IgG exposed progeny showed marked social interaction deficits, abnormally located glutamatergic neurons in layers V–VI of the somatosensory cortex, a 16% increase in activated microglia, and a 15–52% decrease in glutamatergic synapses in layers of the prefrontal and somatosensory cortices. Thus, in utero exposure to CASPR2-antibodies led to permanent behavioral, cellular, and synaptic abnormalities. These findings support a pathogenic role for maternal antibodies in human neurodevelopmental conditions, and CASPR2 as a potential target.
Neuroscience Letters | 2018
David A. Menassa; Sven Braeutigam; Anthony J. Bailey; Christine M. Falter-Wagner
Highlights • Individuals with Autism Spectrum Disorders (ASDs) demonstrate superior performance in a perceptual simultaneity task.• The properties of the neurophysiological γ-response (30–85 Hz) in this task are not known.• In 16 ASD individuals, we identify a complex left antero-posterior γ-oscillatory network associated with the perception of simultaneity.• Frontal γ oscillatory synchrony modulates simultaneity perception in ASD.
Annals of clinical and translational neurology | 2018
Robert Wilson; David A. Menassa; Alexander J Davies; Sophia Michael; Joanna Hester; Wilhelm Küker; Graham P. Collins; Judith Cossins; David Beeson; Neil Steven; Paul Maddison; Simon Rinaldi; Saiju Jacob; Sarosh R. Irani
Checkpoint inhibitor medications have revolutionized oncology practice, but frequently induce immune‐related adverse events. During autoimmune neurology practice over 20 months, we prospectively identified four patients with likely antibody‐mediated neurological diseases after checkpoint inhibitors: longitudinally extensive transverse myelitis, Guillain–Barré syndrome, and myasthenia gravis. All patients shared three characteristics: symptoms commenced 4 weeks after drug administration, responses to conventional immunotherapies were excellent, and autoantibodies traditionally associated with their syndrome were absent. However, serum immunoglobulins from the myelitis and Guillain–Barré syndrome patients showed novel patterns of tissue reactivity. Vigilance is required for antibody‐mediated neurology after checkpoint inhibitor administration. This phenomenon may inform the immunobiology of antibody‐mediated diseases.
PLOS ONE | 2017
Anna E Forbes; John M Schutzer-Weissmann; David A. Menassa; Mark H. Wilson
Background Cycle use across London and the UK has increased considerably over the last 10 years. With this there has been an increased interest in cycle safety and injury prevention. Head injuries are an important cause of mortality and morbidity in cyclists. This study aimed to ascertain the frequency of different head injury types in cyclists and whether wearing a bicycle helmet affords protection against specific types of head injury. Methods A retrospective observational study of all cyclists older than 16 years admitted to a London Major Trauma Centre between 1st January 2011 and 31st December 2015 was completed. A cohort of patients who had serious head injury was identified (n = 129). Of these, data on helmet use was available for 97. Comparison was made between type of injury frequency in helmeted and non-helmeted cyclists within this group of patients who suffered serious head injury. Results Helmet use was shown to be protective against intracranial injury in general (OR 0.2, CI 0.07–0.55, p = 0.002). A protective effect against subdural haematoma was demonstrated (OR 0.14, CI 0.03–0.72, p = 0.02). Wearing a helmet was also protective against skull fractures (OR 0.12, CI 0.04–0.39, p<0.0001) but not any other specific extracranial injuries. This suggests that bicycle helmets are protective against those injuries caused by direct impact to the head. Further research is required to clarify their role against injuries caused by shearing forces. Conclusions In a largely urban environment, the use of cycle helmets appears to be protective for certain types of serious intra and extracranial head injuries. This may help to inform future helmet design.
Brain Pathology | 2017
David A. Menassa; Carolyn Sloan; Steven A. Chance
Autism Spectrum Disorder is characterized by sensory anomalies including impaired olfactory identification. Between 5 and 46 percent of individuals with autism have a clinical diagnosis of epilepsy. Primary olfactory cortex (piriform cortex) is central to olfactory identification and is an epileptogenic structure. Cytoarchitectural changes in olfactory cortex may underlie olfactory differences seen in autism. Primary olfactory cortex was sampled from 17 post‐mortem autism cases with and without epilepsy, 11 epilepsy cases without autism and 11 typically developed cases. Stereological and neuropathological methods were used to quantify glial, pyramidal and non‐pyramidal cell densities in layers of the piriform as well as identify pathological differences in this area and its neighbouring region, the olfactory tubercle. We found increased layer II glial cell densities in autism with and without epilepsy, which were negatively correlated with age and positively correlated with levels of corpora amylacea in layer I. These changes were also associated with greater symptom severity and did not extend to the olfactory tubercle. Glial cell organization may follow an altered trajectory of development with age in autism. The findings are consistent with other studies implicating increased glial cells in the autism brain. Altered cytoarchitecture may contribute to sensory deficits observed in affected individuals. This study provides evidence that autism is linked to alterations in the cytoarchitectural structure that underlies primary sensory processes and is not restricted to heteromodal (“higher”) cognitive centers.
Neurology | 2018
G. Berridge; David A. Menassa; Teresa Moloney; Patrick Waters; Imogen Welding; Selina Thomsen; Sameer M. Zuberi; R. Fischer; A. Radu Aricescu; Michael Pike; Russell C. Dale; Benedikt M. Kessler; Angela Vincent; Ming Lim; Sarosh R. Irani; Bethan Lang
Objective To identify neuronal surface antibodies in opsoclonus myoclonus ataxia syndrome (OMAS) using contemporary antigen discovery methodology. Methods OMAS patient serum immunoglobulin G immunohistochemistry using age-equivalent rat cerebellar tissue was followed by immunoprecipitation, gel electrophoresis, and mass spectrometry. Data are available via ProteomeXchange (identifier PXD009578). This generated a list of potential neuronal surface cerebellar autoantigens. Live cell-based assays were used to confirm membrane-surface antigens and adsorb antigen-specific immunoglobulin Gs. The serologic results were compared to the clinical data. Results Four of the 6 OMAS sera tested bound rat cerebellar sections. Two of these sera with similar immunoreactivities were used in immunoprecipitation experiments using cerebellum from postnatal rat pups (P18). Mass spectrometry identified 12 cell-surface proteins, of which glutamate receptor δ2 (GluD2), a predominately cerebellar-expressed protein, was found at a 3-fold-higher concentration than the other 11 proteins. Antibodies to GluD2 were identified in 14/16 (87%) OMAS samples, compared with 5/139 (5%) pediatric and 1/38 (2.6%) adult serum controls (p < 0.0001), and in 2/4 sera from patients with neuroblastoma without neurologic features. Adsorption of positive OMAS sera against GluD2-transfected cells substantially reduced but did not eliminate reactivity toward cerebellar sections. Conclusion Autoantibodies to GluD2 are common in patients with OMAS, bind to surface determinants, and are potentially pathogenic.
Neurological Sciences | 2018
Francesco M. Galassi; Nicole Bender; Michael E. Habicht; Emanuele Armocida; Fabrizio Toscano; David A. Menassa; Matteo Cerri
St. Catherine of Siena suffered from an extreme form of holy fasting, a condition classified as anorexia mirabilis (also known as inedia prodigiosa). Historical and medical scholarships alike have drawn a comparison between this primaeval type of anorexia with a relatively common form of eating disorder among young women in the modern world, anorexia nervosa. St. Catherine’s condition was characterised by a disgust for sweet taste, a condition also described in anorexia nervosa, and characterised by specific neurophysiological changes in the brain. St. Catherine’s case may be considered one of the oldest veritable descriptions of altered gustation (dysgeusia). Moreover, a more compelling neurophysiological similarity between anorexia mirabilis and anorexia nervosa may be proposed.