Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Nagel is active.

Publication


Featured researches published by David A. Nagel.


Journal of Molecular Biology | 2003

Removing the redundancy from randomised gene libraries

Marcus D. Hughes; David A. Nagel; Albert Francis Santos; Andrew J. Sutherland; Anna V. Hine

Amino acid substitution plays a vital role in both the molecular engineering of proteins and analysis of structure-activity relationships. High-throughput substitution is achieved by codon randomisation, which generates a library of mutants (a randomised gene library) in a single experiment. For full randomisation, key codons are typically replaced with NNN (64 sequences) or NN(G)(CorT) (32 sequences). This obligates cloning of redundant codons alongside those required to encode the 20 amino acids. As the number of randomised codons increases, there is therefore a progressive loss of randomisation efficiency; the number of genes required per protein rises exponentially. The redundant codons cause amino acids to be represented unevenly; for example, methionine is encoded just once within NNN, whilst arginine is encoded six times. Finally, the organisation of the genetic code makes it impossible to encode functional subsets of amino acids (e.g. polar residues only) in a single experiment. Here, we present a novel solution to randomisation where genetic redundancy is eliminated; the number of different genes equals the number of encoded proteins, regardless of codon number. There is no inherent amino acid bias and any required subset of amino acids may be encoded in one experiment. This generic approach should be widely applicable in studies involving randomisation of proteins.


PLOS ONE | 2013

α7 nicotinic receptor-mediated astrocytic gliotransmitter release: Aβ effects in a preclinical Alzheimer's mouse model

Tiina Pirttimäki; Neela K. Codadu; Alia Awni; Pandey Pratik; David A. Nagel; Eric J. Hill; Kelly T. Dineley; H. Rheinallt Parri

It is now recognized that astrocytes participate in synaptic communication through intimate interactions with neurons. A principal mechanism is through the release of gliotransmitters (GTs) such as ATP, D-serine and most notably, glutamate, in response to astrocytic calcium elevations. We and others have shown that amyloid-β (Aβ), the toxic trigger for Alzheimer’s disease (AD), interacts with hippocampal α7 nicotinic acetylcholine receptors (nAChRs). Since α7nAChRs are highly permeable to calcium and are expressed on hippocampal astrocytes, we investigated whether Aβ could activate astrocytic α7nAChRs in hippocampal slices and induce GT glutamate release. We found that biologically-relevant concentrations of Aβ1-42 elicited α7nAChR-dependent calcium elevations in hippocampal CA1 astrocytes and induced NMDAR-mediated slow inward currents (SICs) in CA1 neurons. In the Tg2576 AD mouse model for Aβ over-production and accumulation, we found that spontaneous astrocytic calcium elevations were of higher frequency compared to wildtype (WT). The frequency and kinetic parameters of AD mice SICs indicated enhanced gliotransmission, possibly due to increased endogenous Aβ observed in this model. Activation of α7nAChRs on WT astrocytes increased spontaneous inward currents on pyramidal neurons while α7nAChRs on astrocytes of AD mice were abrogated. These findings suggest that, at an age that far precedes the emergence of cognitive deficits and plaque deposition, this mouse model for AD-like amyloidosis exhibits augmented astrocytic activity and glutamate GT release suggesting possible repercussions for preclinical AD hippocampal neural networks that contribute to subsequent cognitive decline.


PLOS ONE | 2012

NT2 derived neuronal and astrocytic network signalling

Eric J. Hill; Cristina Jiménez-González; Marta Tarczyluk; David A. Nagel; Michael D. Coleman; H. Rheinallt Parri

A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns) expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As) exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.


PLOS ONE | 2013

Effects of Lithium and Valproic Acid on Gene Expression and Phenotypic Markers in an NT2 Neurosphere Model of Neural Development

Eric J. Hill; David A. Nagel; John D. O’Neil; Elizabeth E. Torr; Elizabeth K. Woehrling; Andrew Devitt; Michael D. Coleman

Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.


Journal of Cerebral Blood Flow and Metabolism | 2013

Functional astrocyte-neuron lactate shuttle in a human stem cell-derived neuronal network

Marta Tarczyluk; David A. Nagel; John O'Neil; H. Rheinallt Parri; Erin Hy Tse; Michael D. Coleman; Eric J. Hill

The NT2.D1 cell line is one of the most well-documented embryocarcinoma cell lines, and can be differentiated into neurons and astrocytes. Great focus has also been placed on defining the electrophysiological properties of the neuronal cells, and more recently we have investigated the functional properties of their associated astrocytes. We now show for the first time that human stem cell-derived astrocytes produce glycogen and that co-cultures of these cells demonstrate a functional astrocyte-neuron lactate shuttle (ANLS). The ANLS hypothesis proposes that during neuronal activity, glutamate released into the synaptic cleft is taken up by astrocytes and triggers glucose uptake, which is converted into lactate and released via monocarboxylate transporters for neuronal use. Using mixed cultures of NT2-derived neurons and astrocytes, we have shown that these cells modulate their glucose uptake in response to glutamate. Additionally, we demonstrate that in response to increased neuronal activity and under hypoglycaemic conditions, co-cultures modulate glycogen turnover and increase lactate production. Similar results were also shown after treatment with glutamate, potassium, isoproterenol, and dbcAMP. Together, these results demonstrate for the first time a functional ANLS in a human stem cell-derived co-culture.


PLOS ONE | 2013

Synthesis and Characterization of Dual-Functionalized Core-Shell Fluorescent Microspheres for Bioconjugation and Cellular Delivery

Jonathan M. Behrendt; David A. Nagel; Evita Chundoo; Lois M. Alexander; Damien Dupin; Anna V. Hine; Mark Bradley; Andrew J. Sutherland

The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide). Following internal labeling, bioconjugation of green fluorescent protein (GFP) to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630) and shells (GFP). In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular delivery of proteins.


Journal of Cerebral Blood Flow and Metabolism | 2015

Amyloid β 1-42 induces hypometabolism in human stem cell-derived neuron and astrocyte networks.

Marta Tarczyluk; David A. Nagel; H. Rhein Parri; Erin H.Y. Tse; James Brown; Michael D. Coleman; Eric J. Hill

Alzheimers disease (AD) is the most common form of dementia, affecting more than 35 million people worldwide. Brain hypometabolism is a major feature of AD, appearing decades before cognitive decline and pathologic lesions. To date, the majority of studies on hypometabolism in AD have used transgenic animal models or imaging studies of the human brain. As it is almost impossible to validate these findings using human tissue, alternative models are required. In this study, we show that human stem cell-derived neuron and astrocyte cultures treated with oligomers of amyloid beta 1-42 (Aβ1-42) also display a clear hypometabolism, particularly with regard to utilization of substrates such as glucose, pyruvate, lactate, and glutamate. In addition, a significant increase in the glycogen content of cells was also observed. These changes were accompanied by changes in NAD+/NADH, ATP, and glutathione levels, suggesting a disruption in the energy-redox axis within these cultures. The high energy demands associated with neuronal functions such as memory formation and protection from oxidative stress put these cells at particular risk from Aβ-induced hypometabolism. Further research using this model may elucidate the mechanisms associated with Aβ-induced hypometabolism.


Proceedings of SPIE | 2010

Aptamer-based surface plasmon fibre sensor for thrombin detection

Thomas D.P. Allsop; David A. Nagel; Ron Neal; Edward Davies; Chengbo Mou; Peter Bond; Saeed Rehman; Kyriacos Kalli; David J. Webb; Phil Calverhouse; Marco Mascini; Ian Bennion

A series of surface plasmonic fibre devices were fabricated using multiple coatings deposited on a lapped section of a single mode fibre and post-fabrication UV laser irradiation processing with a phase mask, producing a surface relief grating structure. These devices showed high spectral sensitivity in the aqueous index regime ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. The devices were then coated with human thrombin binding aptamer. Several concentrations of thrombin in buffer solution were made, ranging from 1nM to 1μM. All the concentrations were detectable by the devices demonstrating that sub-nM concentrations may be monitored.


Protein Expression and Purification | 2017

Expression and purification of tau protein and its frontotemporal dementia variants using a cleavable histidine tag

Thomas K. Karikari; Alexandra Turner; Robert Stass; Leonie C.Y. Lee; Bethany Wilson; David A. Nagel; Eric J. Hill; Kevin G. Moffat

Recombinant tau protein is widely used to study the biochemical, cellular and pathological aspects of tauopathies, including Alzheimers disease and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTPD-17). Pure tau in high yield is a requirement for in vitro evaluation of the proteins physiological and toxic functions. However, the preparation of recombinant tau is complicated by the proteins propensity to aggregate and form truncation products, necessitating the use of multiple, time-consuming purification methods. In this study, we investigated parameters that influence the expression of wild type and FTPD-17 pathogenic tau, in an attempt to identify ways to maximise expression yield. Here, we report on the influence of the choice of host strain, induction temperature, duration of induction, and media supplementation with glucose on tau expression in Escherichia coli. We also describe a straightforward process to purify the expressed tau proteins using immobilised metal affinity chromatography, with favourable yields over previous reports. An advantage of the described method is that it enables high yield production of functional oligomeric and monomeric tau, both of which can be used to study the biochemical, physiological and toxic properties of the protein.


The Journal of Physiology | 2016

Stem cell‐derived astrocytes: Are they physiologically credible?

Eric J. Hill; David A. Nagel; Rheinallt Parri; Michael D. Coleman

Astrocytes are now increasingly acknowledged as having fundamental and sophisticated roles in brain function and dysfunction. Unravelling the complex mechanisms that underlie human brain astrocyte–neuron interactions is therefore an essential step on the way to understanding how the brain operates. Insights into astrocyte function to date have almost exclusively been derived from studies conducted using murine or rodent models. Whilst these have led to significant discoveries, preliminary work with human astrocytes has revealed a hitherto unknown range of astrocyte types with potentially greater functional complexity and increased neuronal interaction with respect to animal astrocytes. It is becoming apparent, therefore, that many important functions of astrocytes will only be discovered by direct physiological interrogation of human astrocytes. Recent advancements in the field of stem cell biology have provided a source of human‐based models. These will provide a platform to facilitate our understanding of normal astrocyte functions as well as their role in CNS pathology. A number of recent studies have demonstrated that stem cell‐derived astrocytes exhibit a range of properties, suggesting that they may be functionally equivalent to their in vivo counterparts. Further validation against in vivo models will ultimately confirm the future utility of these stem cell‐based approaches in fulfilling the need for human‐based cellular models for basic and clinical research. In this review we discuss the roles of astrocytes in the brain and highlight the extent to which human stem cell‐derived astrocytes have demonstrated functional activities that are equivalent to those observed in vivo.

Collaboration


Dive into the David A. Nagel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Bradley

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge