Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Ostrov is active.

Publication


Featured researches published by David A. Ostrov.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire

David A. Ostrov; Barry J. Grant; Yuri A. Pompeu; John Sidney; Mikkel Harndahl; Scott Southwood; Carla Oseroff; Shun Lu; Jean Jakoncic; César Augusto F. de Oliveira; Lun Yang; Hu Mei; Leming Shi; Jeffrey Shabanowitz; A. Michelle English; Amanda Wriston; Andrew Lucas; E. Phillips; S. Mallal; Howard M. Grey; Alessandro Sette; Donald F. Hunt; Søren Buus; Bjoern Peters

Idiosyncratic adverse drug reactions are unpredictable, dose-independent and potentially life threatening; this makes them a major factor contributing to the cost and uncertainty of drug development. Clinical data suggest that many such reactions involve immune mechanisms, and genetic association studies have identified strong linkages between drug hypersensitivity reactions to several drugs and specific HLA alleles. One of the strongest such genetic associations found has been for the antiviral drug abacavir, which causes severe adverse reactions exclusively in patients expressing the HLA molecular variant B*57:01. Abacavir adverse reactions were recently shown to be driven by drug-specific activation of cytokine-producing, cytotoxic CD8+ T cells that required HLA-B*57:01 molecules for their function; however, the mechanism by which abacavir induces this pathologic T-cell response remains unclear. Here we show that abacavir can bind within the F pocket of the peptide-binding groove of HLA-B*57:01, thereby altering its specificity. This provides an explanation for HLA-linked idiosyncratic adverse drug reactions, namely that drugs can alter the repertoire of self-peptides presented to T cells, thus causing the equivalent of an alloreactive T-cell response. Indeed, we identified specific self-peptides that are presented only in the presence of abacavir and that were recognized by T cells of hypersensitive patients. The assays that we have established can be applied to test additional compounds with suspected HLA-linked hypersensitivities in vitro. Where successful, these assays could speed up the discovery and mechanistic understanding of HLA-linked hypersensitivities, and guide the development of safer drugs.


American Journal of Respiratory and Critical Care Medicine | 2009

Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension.

Anderson J. Ferreira; Vinayak Shenoy; Yoriko Yamazato; Srinivas Sriramula; Joseph Francis; Lihui Yuan; Ronald K. Castellano; David A. Ostrov; Suk Paul Oh; Michael J. Katovich; Mohan K. Raizada

RATIONALE It has been proposed that an activated renin angiotensin system (RAS) causes an imbalance between the vasoconstrictive and vasodilator mechanisms involving the pulmonary circulation leading to the development of pulmonary hypertension (PH). Recent studies have indicated that angiotensin-converting enzyme 2 (ACE2), a member of the vasoprotective axis of the RAS, plays a regulatory role in lung pathophysiology, including pulmonary fibrosis and acute lung disease. Based on these observations, we propose the hypothesis that activation of endogenous ACE2 can shift the balance from the vasoconstrictive, proliferative axis (ACE-Ang II-AT1R) to the vasoprotective axis [ACE2-Ang-(1-7)-Mas] of the RAS, resulting in the prevention of PH. OBJECTIVES We have taken advantage of a recently discovered synthetic activator of ACE2, XNT (1-[(2-dimethylamino) ethylamino]-4-(hydroxymethyl)-7-[(4-methylphenyl) sulfonyl oxy]-9H-xanthene-9-one), to study its effects on monocrotaline-induced PH in rats to support this hypothesis. METHODS The cardiopulmonary effects of XNT were evaluated in monocrotaline-induced PH rat model. MEASUREMENTS AND MAIN RESULTS A single subcutaneous treatment of monocrotaline in rats resulted in elevated right ventricular systolic pressure, right ventricular hypertrophy, increased pulmonary vessel wall thickness, and interstitial fibrosis. These changes were associated with increases in the mRNA levels of renin, ACE, angiotensinogen, AT1 receptors, and proinflammatory cytokines. All these features of PH were prevented in these monocrotaline-treated rats by chronic treatment with XNT. In addition, XNT caused an increase in the antiinflammatory cytokine, IL-10. CONCLUSIONS These observations provide conceptual support that activation of ACE2 by a small molecule can be a therapeutically relevant approach for treating and controlling PH.


Hypertension | 2008

Structure-Based Identification of Small-Molecule Angiotensin-Converting Enzyme 2 Activators as Novel Antihypertensive Agents

Jose A. Hernandez Prada; Anderson J. Ferreira; Michael J. Katovich; Vinayak Shenoy; Yanfei Qi; Robson A.S. Santos; Ronald K. Castellano; Andrew J. Lampkins; Vladimir Gubala; David A. Ostrov; Mohan K. Raizada

Angiotensin-converting enzyme 2 (ACE2) is a key renin-angiotensin system enzyme involved in balancing the adverse effects of angiotensin II on the cardiovascular system, and its overexpression by gene transfer is beneficial in cardiovascular disease. Therefore, our objectives were 2-fold: to identify compounds that enhance ACE2 activity using a novel conformation-based rational drug discovery strategy and to evaluate whether such compounds reverse hypertension-induced pathophysiologies. We used a unique virtual screening approach. In vitro assays revealed 2 compounds (a xanthenone and resorcinolnaphthalein) that enhanced ACE2 activity in a dose-dependent manner. Acute in vivo administration of the xanthenone resulted in a dose-dependent transient and robust decrease in blood pressure (at 10 mg/kg, spontaneously hypertensive rats decreased 71±9 mm Hg and Wistar-Kyoto rats decreased 21±8 mm Hg; P<0.05). Chronic infusion of the xanthenone (120 μg/day) resulted in a modest decrease in the spontaneously hypertensive rat blood pressure (17 mm Hg; 2-way ANOVA; P<0.05), whereas it had no effect in Wistar-Kyoto rats. Strikingly, the decrease in blood pressure was also associated with improvements in cardiac function and reversal of myocardial, perivascular, and renal fibrosis in the spontaneously hypertensive rats. We conclude that structure-based screening can help identify compounds that activate ACE2, decrease blood pressure, and reverse tissue remodeling. Administration of ACE2 activators may be a valid strategy for antihypertensive therapy.


Journal of Medicinal Chemistry | 2008

A small molecule inhibitor 1,2,4,5-Benzenetetraamine tetrahydrochloride, targeting the Y397 site of Focal Adhesion Kinase decreases tumor growth

Vita M. Golubovskaya; Carl Nyberg; Min Zheng; Frederick Kweh; Andrew T. Magis; David A. Ostrov; William G. Cance

Focal adhesion kinase (FAK) is a nonreceptor kinase that is overexpressed in many types of tumors. We developed a novel cancer-therapy approach, targeting the main autophosphorylation site of FAK, Y397, by computer modeling and screening of the National Cancer Institute (NCI) small molecule compounds database. More than 140,000 small molecule compounds were docked into the N-terminal domain of the FAK crystal structure in 100 different orientations that identified 35 compounds. One compound, 14 (1,2,4,5-benzenetetraamine tetrahydrochloride), significantly decreased viability in most of the cells to the levels equal to or higher than control FAK inhibitor 1a (2-[5-chloro-2-[2-methoxy-4-(4-morpholinyl)phenylamino]pyrimidin-4-ylamino]-N-methylbenzamide, TAE226) from Novartis, Inc. Compound 14 specifically and directly blocked phosphorylation of Y397-FAK in a dose- and time-dependent manner. It increased cell detachment and inhibited cell adhesion in a dose-dependent manner. Furthermore, 14 effectively caused breast tumor regression in vivo. Thus, targeting the Y397 site of FAK with 14 inhibitor can be effectively used in cancer therapy.


Antimicrobial Agents and Chemotherapy | 2007

Discovery of Novel DNA Gyrase Inhibitors by High-Throughput Virtual Screening

David A. Ostrov; Jose A. Hernandez Prada; Patrick E. Corsino; Kathryn A. Finton; Nhan Le; Thomas C. Rowe

ABSTRACT The bacterial type II topoisomerases DNA gyrase and topoisomerase IV are validated targets for clinically useful quinolone antimicrobial drugs. A significant limitation to widely utilized quinolone inhibitors is the emergence of drug-resistant bacteria due to an altered DNA gyrase. To address this problem, we have used structure-based molecular docking to identify novel drug-like small molecules that target sites distinct from those targeted by quinolone inhibitors. A chemical ligand database containing approximately 140,000 small molecules (molecular weight, <500) was molecularly docked onto two sites of Escherichia coli DNA gyrase targeting (i) a previously unexplored structural pocket formed at the dimer interface of subunit A and (ii) a small region of the ATP binding pocket on subunit B overlapping the site targeted by coumarin and cyclothialidine drugs. This approach identified several small-molecule compounds that inhibited the DNA supercoiling activity of purified E. coli DNA gyrase. These compounds are structurally unrelated to previously identified gyrase inhibitors and represent potential scaffolds for the optimization of novel antibacterial agents that act on fluoroquinolone-resistant strains.


Cell Cycle | 2009

A novel small molecule inhibitor of FAK decreases growth of human pancreatic cancer

Steven N. Hochwald; Carl Nyberg; Min Zheng; Donghang Zheng; Cheng Wood; Nicole A. Massoll; Andrew T. Magis; David A. Ostrov; William G. Cance; Vita M. Golubovskaya

Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that is overexpressed in many types of tumors, including pancreatic cancer, and plays an important role in cell adhesion and survival signaling. Pancreatic cancer is a lethal disease and is very resistant to chemotherapy, and FAK has been shown recently to assist in tumor cell survival. Therefore, FAK is an excellent potential target for anti-cancer therapy. We identified a novel small molecule inhibitor (1,2,4,5-Benzenetetraamine tetrahydrochloride, that we called Y15) targeting the main autophosphorylation site of FAK and hypothesized that it would be an effective treatment strategy against human pancreatic cancer. Y15 specifically blocked phosphorylation of Y397-FAK and total phosphorylation of FAK. It directly inhibited FAK autophosphorylation in a dose- and time-dependent manner. Furthermore, Y15 increased pancreatic cancer cell detachment and inhibited cell adhesion in a dose-dependent manner. Y15 effectively caused human pancreatic tumor regression in vivo, when administered alone and its effects were synergistic with gemcitabine chemotherapy. This was accompanied by a decrease in Y397-phosphorylation of FAK in the tumors treated with Y15. Thus, targeting the Y397 site of FAK in pancreatic cancer with the small molecule inhibitor, 1,2,4,5-Benzenetetraamine tetrahydrochloride, is a potentially effective treatment strategy in this deadly disease.


Journal of Biomolecular Screening | 2011

Prediction of Off-Target Effects on Angiotensin-Converting Enzyme 2

Lidia V. Kulemina; David A. Ostrov

The authors describe a structure-based strategy to identify therapeutically beneficial off-target effects by screening a chemical library of Food and Drug Administration (FDA)–approved small-molecule drugs matching pharmacophores defined for specific target proteins. They applied this strategy to angiotensin-converting enzyme 2 (ACE2), an enzyme that generates vasodilatory peptides and promotes protection from hypertension-associated cardiovascular disease. The conformation-based structural selection method by molecular docking using DOCK allowed them to identify a series of FDA-approved drugs that enhance catalytic efficiency of ACE2 in vitro. These data demonstrate that libraries of approved drugs can be rapidly screened to identify potential side effects due to interactions with specific proteins other than the intended targets.


Annual Review of Medicine | 2015

T cell-mediated hypersensitivity reactions to drugs.

Rebecca Pavlos; S. Mallal; David A. Ostrov; Søren Buus; Imir G. Metushi; Bjoern Peters; E. Phillips

The immunological mechanisms driving delayed hypersensitivity reactions (HSRs) to drugs mediated by drug-reactive T lymphocytes are exemplified by several key examples and their human leukocyte antigen (HLA) associations: abacavir and HLA-B*57:01, carbamazepine and HLA-B*15:02, allo-purinol and HLA-B*58:01, and both amoxicillin-clavulanate and nevirapine with multiple class I and II alleles. For HLA-restricted drug HSRs, specific class I and/or II HLA alleles are necessary but not sufficient for tissue specificity and the clinical syndrome. Several models have been proposed to explain the immunopathogenesis of severe T cell-mediated drug HSRs, and our increased understanding of the risk factors and mechanisms involved in the development of these reactions will further the development of sensitive and specific strategies for preclinical screening that will lead to safer and more cost-effective drug design.


Autophagy | 2014

A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors.

Debra Akin; S. Keisin Wang; Pouran Habibzadegah-Tari; Brian K. Law; David A. Ostrov; Min Li; Xiao Ming Yin; Jae-Sung Kim; Nicole A. Horenstein; William A. Dunn

Autophagy has been implicated in the progression and chemoresistance of various cancers. In this study, we have shown that osteosarcoma Saos-2 cells lacking ATG4B, a cysteine proteinase that activates LC3B, are defective in autophagy and fail to form tumors in mouse models. By combining in silico docking with in vitro and cell-based assays, we identified small compounds that suppressed starvation-induced protein degradation, LC3B lipidation, and formation of autophagic vacuoles. NSC185058 effectively inhibited ATG4B activity in vitro and in cells while having no effect on MTOR and PtdIns3K activities. In addition, this ATG4B antagonist had a negative impact on the development of Saos-2 osteosarcoma tumors in vivo. We concluded that tumor suppression was due to a reduction in ATG4B activity, since we found autophagy suppressed within treated tumors and the compound had no effects on oncogenic protein kinases. Our findings demonstrate that ATG4B is a suitable anti-autophagy target and a promising therapeutic target to treat osteosarcoma.


Investigative Ophthalmology & Visual Science | 2008

A high-throughput screening method for small-molecule pharmacologic chaperones of misfolded rhodopsin.

Syed Mohammed Noorwez; David A. Ostrov; J. Hugh McDowell; Mark P. Krebs; Shalesh Kaushal

PURPOSE Many mutations in rhodopsin, including P23H, result in misfolding and mislocalization of the protein. It has been demonstrated that pharmacologic chaperones are effective in assisting the proper folding and targeting of P23H opsin. This study was designed to investigate a high-throughput screening strategy for identification of pharmacologic chaperones by using a combination of in silico, cell-based, and in vitro METHODS methods. A library of 24,000 drug-like small molecules was screened by in silico molecular docking with DOCK5.1. The top hits were assayed in an in vitro competition assay. The selected compound was then assayed for pharmacologic chaperoning activity in stable cell lines expressing wild-type and P23H opsin. RESULTS Beta-ionone was easily identified by the high-throughput screen. It strongly inhibits rhodopsin formation and, when incubated in cells expressing P23H opsin, resulted in a 2.5-fold rescue of P23H opsin. The screen also identified compound NSC45012 [1-(3,5-dimethyl-1H-pyrazol-4-yl)ethanone], a weak inhibitor of opsin regeneration and resulted in a 40% rescue of the mutant opsin. The level of rescue correlated well with the extent of inhibition. CONCLUSIONS A combination of in silico and cell-based screening provides a useful tool for identifying pharmacologic chaperones for P23H opsin. This approach identified both potent and weak pharmacologic chaperones. Both types of molecules may be potential candidates for treatment of opsin-related RP.

Collaboration


Dive into the David A. Ostrov's collaboration.

Top Co-Authors

Avatar

William G. Cance

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Vita M. Golubovskaya

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary W. Litman

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Bjoern Peters

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Elena Kurenova

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

John P. Cannon

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Robert N. Haire

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge