Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Pearce is active.

Publication


Featured researches published by David A. Pearce.


Biological Psychiatry | 2005

Reelin signaling is impaired in autism.

S. Hossein Fatemi; Anne V. Snow; Joel M. Stary; Mohsen Araghi-Niknam; Teri J. Reutiman; Suzanne Lee; Andrew I. Brooks; David A. Pearce

BACKGROUND Autism is a severe neurodevelopmental disorder with genetic and environmental etiologies. Recent genetic linkage studies implicate Reelin glycoprotein in causation of autism. To further investigate these studies, brain levels of Reelin protein and mRNA and mRNAs for VLDLR, Dab-1, and GSK3 were investigated. METHODS Postmortem superior frontal, parietal, and cerebellar cortices of age, gender, and postmortem interval-matched autistic and control subjects were subjected to SDS-PAGE and Western blotting of Reelin protein. Quantitative reverse transcriptase polymerase chain reaction analysis of Reelin, VLDL-R, Dab-1, and GSK3 mRNA species in superior frontal and cerebellar cortices of autistic and control subjects were also performed. RESULTS Reelin 410, 330, and 180 kDa/beta-actin values were reduced significantly in frontal and cerebellar, and nonsignificantly in parietal, areas of autistic brains versus control subjects, respectively. The mRNAs for Reln and Dab-1 were reduced significantly whereas the mRNA for Reln receptor VLDLR was elevated significantly in superior frontal and cerebellar areas of autistic brains versus control brains, respectively. CONCLUSIONS Reductions in Reelin protein and mRNA and Dab 1 mRNA and elevations in Reln receptor VLDLR mRNA demonstrate impairments in the Reelin signaling system in autism, accounting for some of the brain structural and cognitive deficits observed in the disorder.


Schizophrenia Research | 2008

Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders.

S. Hossein Fatemi; Teri J. Reutiman; Timothy D. Folsom; Hao Huang; Kenichi Oishi; Susumu Mori; Donald F. Smee; David A. Pearce; Christine Winter; Reinhard Sohr; Georg Juckel

Prenatal viral infection has been associated with development of schizophrenia and autism. Our laboratory has previously shown that viral infection causes deleterious effects on brain structure and function in mouse offspring following late first trimester (E9) administration of influenza virus. We hypothesized that late second trimester infection (E18) in mice may lead to a different pattern of brain gene expression and structural defects in the developing offspring. C57BL6J mice were infected on E18 with a sublethal dose of human influenza virus or sham-infected using vehicle solution. Male offsping of the infected mice were collected at P0, P14, P35 and P56, their brains removed and prefrontal cortex, hippocampus and cerebellum dissected and flash frozen. Microarray, qRT-PCR, DTI and MRI scanning, western blotting and neurochemical analysis were performed to detect differences in gene expression and brain atrophy. Expression of several genes associated with schizophrenia or autism including Sema3a, Trfr2 and Vldlr were found to be altered as were protein levels of Foxp2. E18 infection of C57BL6J mice with a sublethal dose of human influenza virus led to significant gene alterations in frontal, hippocampal and cerebellar cortices of developing mouse progeny. Brain imaging revealed significant atrophy in several brain areas and white matter thinning in corpus callosum. Finally, neurochemical analysis revealed significantly altered levels of serotonin (P14, P35), 5-Hydroxyindoleacetic acid (P14) and taurine (P35). We propose that maternal infection in mouse provides an heuristic animal model for studying the environmental contributions to genesis of schizophrenia and autism, two important examples of neurodevelopmental disorders.


Nature Genetics | 1999

Action of BTN1, the yeast orthologue of the gene mutated in Batten disease.

David A. Pearce; Tracy Ferea; Seth A. Nosel; Biswadip Das; Fred Sherman

Neuronal ceroid-lipofuscinoses (NCL) are autosomal recessive disorders that form the most common group of progressive neurodegenerative diseases in children, with an incidence as high as 1 in 12,500 live births, and with approximately 440,000 carriers in the United States. Disease progression is characterized by a decline in mental abilities, increased severity of untreatable seizures, blindness, loss of motor skills and premature death. The CLN3 gene, which is responsible for Batten disease, has been positionally cloned. The yeast gene, denoted BTN1, encodes a non-essential protein that is 39% identical and 59% similar to human CLN3 ( ref. 4). Strains lacking Btn1p, btn1-Δ, are resistant to D-(-)-threo-2-amino-1-[p-nitrophenyl]-1,3-propanediol (ANP) in a pH-dependent manner. This phenotype was complemented by expression of human CLN3, demonstrating that yeast Btn1p and human CLN3 share the same function. Here, we report that btn1-Δ yeast strains have an abnormally acidic vacuolar pH in the early phases of growth. Furthermore, DNA microarray analysis of BTN1 and btn1-Δ strains revealed differential expression of two genes, with at least one, HSP30, involved in pH control. Because Btn1p is located in the vacuole, we suggest that Batten disease is caused by a defect in vacuolar (lysosomal) pH control. Our findings draw parallels between fundamental biological processes in yeast and previously observed characteristics of neurodegeneration in humans.


Cellular Physiology and Biochemistry | 2003

SGK1 regulation of epithelial sodium transport.

David A. Pearce

Epithelial ion transport is regulated in vertebrates by a variety of hormonal and non-hormonal factors, including mineralocorticoids, insulin, and osmotic shock. SGK1 has been established as an important convergence point for multiple regulators of Na+transport. Unlike most serine-threonine kinases, SGK1 is under dual control: protein levels are controlled through effects on its gene transcription, while its activity is dependent on phosphatidylinositol-3-kinase (PI3K) activity. Aldosterone is the most notable regulator of SGK1 protein level in ion transporting epithelia, while insulin and other activators of the of PI3K are key regulators of its activity. Activated SGK1 regulates a variety of ion transporters, the best characterized of which is the epithelial sodium channel (ENaC). The apical targeting of ENaC is controlled by the ubiquitin ligase, Nedd4-2, and SGK1 acts, at least in part, through phosphorylation-dependent inhibition of Nedd4-2. This effect of SGK1 requires physical associations of Nedd4-2 with both SGK1 and ENaC. Moreover, direct physical association between SGK1 and ENaC may also be implicated in the formation of a tertiary complex. Osmotic shock is likely the most important non-hormonal regulator of SGK1 expression, and surprisingly, SGK1 expression can be induced by hypotonic or hypertonic stress in a cell-type dependent fashion. The SGK family represents an ancient arm of the serine-threonine kinase family, present in all eukaryotes that have been examined, including yeast. SGK1 appears to have been implicated in membrane trafficking and possibly in the control of ion transport and cell volume in early single cell eukaryotes. In metazoan epithelia, it seems likely that SGK1 was adapted to the regulation of ion transport in response to hormonal and osmotic signals.


Journal of Biological Chemistry | 2005

A novel role for glucocorticoid-induced leucine zipper protein in epithelial sodium channel-mediated sodium transport

Rama Soundararajan; Ting Ting Zhang; Jian Wang; Alain Vandewalle; David A. Pearce

The steroid hormone aldosterone stimulates sodium (Na+) transport in tight epithelia by altering the expression of target genes that regulate the activity and trafficking of the epithelial sodium channel (ENaC). We performed microarray analysis to identify aldosterone-regulated transcripts in mammalian kidney epithelial cells (mpkC-CDc14). One target, glucocorticoid-induced leucine zipper protein (GILZ), was previously identified by serial analysis of gene expression (SAGE); however, its function in epithelial ion transport was unknown. Here we show that GILZ expression is rapidly stimulated by aldosterone in mpkCCDc14 and that GILZ, in turn, strongly stimulates ENaC-mediated Na+ transport by inhibiting extracellular signal-regulated kinase (ERK) signaling. In Xenopus oocytes with activated ERK, heterologous GILZ expression consistently inhibited phospho-ERK expression and markedly stimulated ENaC-mediated Na+ current, in a manner similar to that of U0126 (a pharmacologic inhibitor of ERK signaling). In mpkCCDc14 cells, GILZ transfection similarly consistently inhibited phospho-ERK expression and stimulated transepithelial Na+ transport. Furthermore, aldosterone treatment of mpkCCDc14 cells suppressed phospho-ERK levels with a time course that paralleled their increase of Na+ transport. Finally, GILZ expression markedly increased cell surface ENaC expression in epidermal growth factor-treated mammalian kidney epithelial cells, HEK 293. These observations suggest a novel link between GILZ and regulation of epithelial sodium transport through modulation of ERK signaling and could represent an important pathway for mediating aldosterone actions in health and disease.


PLOS Biology | 2012

The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and Implications for Biogeography

Alex D. Rogers; Paul A. Tyler; Douglas P. Connelly; Jonathan T. Copley; Rachael H. James; Robert D Larter; Katrin Linse; Rachel A. Mills; Alberto C. Naveira Garabato; Richard D. Pancost; David A. Pearce; Nicholas Polunin; Christopher R. German; Timothy M. Shank; Philipp H. Boersch-Supan; Belinda J. Alker; Alfred Aquilina; Sarah A. Bennett; Andrew Clarke; Robert J. J. Dinley; Alastair G C Graham; Darryl R. H. Green; Jeffrey A. Hawkes; Laura Hepburn; Ana Hilário; Veerle A.I. Huvenne; Leigh Marsh; Eva Ramírez-Llodra; William D. K. Reid; C. N. Roterman

A survey of Antarctic waters along the East Scotia Ridge in the Southern Ocean reveals a new vent biogeographic province among previously uncharacterized deep-sea hydrothermal vent communities.


Brain Behavior and Immunity | 2007

Maternal antibrain antibodies in autism

Andrew W. Zimmerman; Susan L. Connors; Karla J. Matteson; Li Ching Lee; Harvey S. Singer; Julian A. Castaneda; David A. Pearce

Autism is a neurodevelopmental disorder of prenatal onset that is behaviorally defined. There is increasing evidence for systemic and neuroimmune mechanisms in children with autism. Although genetic factors are important, atypical prenatal maternal immune responses may also be linked to the pathogenesis of autism. We tested serum reactivity in 11 mothers and their autistic children, maternal controls, and several groups of control children, to prenatal, postnatal, and adult rat brain proteins, by immunoblotting. Similar patterns of reactivity to prenatal (gestational day 18), but not postnatal (day 8) or adult rat brain proteins were identified in autistic children, their mothers, and children with other neurodevelopmental disorders, and differed from mothers of normal children, normal siblings of children with autism and normal child controls. Specific patterns of antibody reactivity were present in sera from the autism mothers, from 2 to 18 years after the birth of their affected children and were unrelated to birth order. Immunoblotting using specific antigens for myelin basic protein (MBP) and glial acidic fibrillary protein (GFAP) suggests that these proteins were not targets of the maternal antibodies. The identification of specific serum antibodies in mothers of children with autism that recognize prenatally expressed brain antigens suggests that these autoantibodies could cross the placenta and alter fetal brain development.


Journal of Biological Chemistry | 1997

ANDROGEN AND GLUCOCORTICOID RECEPTOR HETERODIMER FORMATION : A POSSIBLE MECHANISM FOR MUTUAL INHIBITION OF TRANSCRIPTIONAL ACTIVITY

Sei-yu Chen; Jian Wang; Gui-qiu Yu; Weihong Liu; David A. Pearce

The androgen and glucocorticoid hormones elicit divergent and often opposing effects in cells, tissues, and animals. A wide range of physiological and molecular biological evidence suggests that the receptors that mediate these effects, the androgen and glucocorticoid receptors (AR and GR, respectively), influence each other’s transcriptional activity. We now show that coexpressed AR and GR indeed do interact at the transcriptional level and that this interaction is correlated with their ability to form heterodimers at a common DNA site, in vitro and in vivo. Furthermore, mutants that cannot heterodimerize do not inhibit each other’s activity. These observations provide the first evidence that the opposing physiological effects of the androgen and glucocorticoid hormones are due to the direct physical interaction between their receptors at the transcriptional level.


PLOS Biology | 2009

Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1.

Kevin T. Jones; Elisabeth R. Greer; David A. Pearce; Kaveh Ashrafi

The target of rapamycin (TOR) kinase coordinately regulates fundamental metabolic and cellular processes to support growth, proliferation, survival, and differentiation, and consequently it has been proposed as a therapeutic target for the treatment of cancer, metabolic disease, and aging. The TOR kinase is found in two biochemically and functionally distinct complexes, termed TORC1 and TORC2. Aided by the compound rapamycin, which specifically inhibits TORC1, the role of TORC1 in regulating translation and cellular growth has been extensively studied. The physiological roles of TORC2 have remained largely elusive due to the lack of pharmacological inhibitors and its genetic lethality in mammals. Among potential targets of TORC2, the pro-survival kinase AKT has garnered much attention. Within the context of intact animals, however, the physiological consequences of phosphorylation of AKT by TORC2 remain poorly understood. Here we describe viable loss-of-function mutants in the Caenorhabditis elegans homolog of the TORC2-specific component, Rictor (CeRictor). These mutants display a mild developmental delay and decreased body size, but have increased lipid storage. These functions of CeRictor are not mediated through the regulation of AKT kinases or their major downstream target, the insulin-regulated FOXO transcription factor DAF-16. We found that loss of sgk-1, a homolog of the serum- and glucocorticoid-induced kinase, mimics the developmental, growth, and metabolic phenotypes of CeRictor mutants, while a novel, gain-of-function mutation in sgk-1 suppresses these phenotypes, indicating that SGK-1 is a mediator of CeRictor activity. These findings identify new physiological roles for TORC2, mediated by SGK, in regulation of C. elegans lipid accumulation and growth, and they challenge the notion that AKT is the primary effector of TORC2 function.


Journal of The American Society of Nephrology | 2002

The Serum and Glucocorticoid-Inducible Kinase SGK1 and the Na+/H+ Exchange Regulating Factor NHERF2 Synergize to Stimulate the Renal Outer Medullary K+ Channel ROMK1

C. Chris Yun; Monica Palmada; Hamdy M. Embark; Olga Fedorenko; Yuxi Feng; Guido Henke; Iwan Setiawan; Christoph Boehmer; Edward J. Weinman; Sabrina Sandrasagra; Christoph Korbmacher; Philip Cohen; David A. Pearce; Florian Lang

Mineralocorticoids stimulate Na(+) reabsorption and K(+) secretion in principal cells of connecting tubule and collecting duct. The involved ion channels are ENaC and ROMK1, respectively. In Xenopus oocytes, the serum and glucocorticoid-sensitive kinase SGK1 has been shown to increase ENaC activity by enhancing its abundance in the plasma membrane. With the same method, ROMK1 appeared to be insensitive to regulation by SGK1. On the other hand, ROMK1 has been shown to colocalize with NHERF2, a protein mediating targeting and trafficking of transport proteins into the cell membrane. The present study has been performed to test whether NHERF2 is required for regulation of ROMK1 by SGK1. Coexpression of neither NHERF2 nor SGK1 with ROMK1 increases ROMK1 activity. However, coexpression of NHERF2 and SGK1 together with ROMK1 markedly increases K(+) channel activity. The combined effect of SGK1 and NHERF2 does not significantly alter the I/V relation of the channel but increases the abundance of the channel in the membrane and decreases the decay of channel activity after inhibition of vesicle insertion with brefeldin. Coexpression of NHERF2 and SGK1 does not modify cytosolic pH but leads to a slight shift of pK(a) of ROMK1 to more acidic values. In conclusion, NHERF2 and SGK1 interact to enhance ROMK1 activity in large part by enhancing the abundance of channel protein within the cell membrane. This interaction allows the integration of genomic regulation and activation of SGK1 and NHERF2 in the control of ROMK1 activity and renal K(+) excretion.

Collaboration


Dive into the David A. Pearce's collaboration.

Top Co-Authors

Avatar

Jian Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Attila Kovacs

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Peter Convey

British Antarctic Survey

View shared research outputs
Top Co-Authors

Avatar

Fred Sherman

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Jonathan D. Cooper

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Florian Lang

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aditi Bhargava

University of California

View shared research outputs
Top Co-Authors

Avatar

Jill M. Weimer

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Rama Soundararajan

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge