Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Proia is active.

Publication


Featured researches published by David A. Proia.


Molecular Cancer Therapeutics | 2012

Ganetespib, a unique triazolone-containing Hsp90 inhibitor, exhibits potent antitumor activity and a superior safety profile for cancer therapy

Weiwen Ying; Zhenjian Du; Lijun Sun; Kevin Foley; David A. Proia; Ronald K. Blackman; Dan Zhou; Takayo Inoue; Noriaki Tatsuta; Jim Sang; Shuxia Ye; Jamie Acquaviva; Luisa Shin Ogawa; Yumiko Wada; James Barsoum; Keizo Koya

Targeted inhibition of the molecular chaperone Hsp90 results in the simultaneous blockade of multiple oncogenic signaling pathways and has, thus, emerged as an attractive strategy for the development of novel cancer therapeutics. Ganetespib (formerly known as STA-9090) is a unique resorcinolic triazolone inhibitor of Hsp90 that is currently in clinical trials for a number of human cancers. In the present study, we showed that ganetespib exhibits potent in vitro cytotoxicity in a range of solid and hematologic tumor cell lines, including those that express mutated kinases that confer resistance to small-molecule tyrosine kinase inhibitors. Ganetespib treatment rapidly induced the degradation of known Hsp90 client proteins, displayed superior potency to the ansamycin inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), and exhibited sustained activity even with short exposure times. In vivo, ganetespib showed potent antitumor efficacy in solid and hematologic xenograft models of oncogene addiction, as evidenced by significant growth inhibition and/or regressions. Notably, evaluation of the microregional activity of ganetespib in tumor xenografts showed that ganetespib was efficiently distributed throughout tumor tissue, including hypoxic regions >150 μm from the microvasculature, to inhibit proliferation and induce apoptosis. Importantly, ganetespib showed no evidence of cardiac or liver toxicity. Taken together, this preclinical activity profile indicates that ganetespib may have broad application for a variety of human malignancies, and with select mechanistic and safety advantages over other first- and second-generation Hsp90 inhibitors. Mol Cancer Ther; 11(2); 475–84. ©2011 AACR.


Cancer Research | 2007

Systemic Stromal Effects of Estrogen Promote the Growth of Estrogen Receptor–Negative Cancers

Piyush B. Gupta; David A. Proia; Oya Cingoz; Janusz Weremowicz; Stephen P. Naber; Robert A. Weinberg; Charlotte Kuperwasser

Numerous hormonal factors contribute to the lifetime risk of breast cancer development. These include inherited genetic mutations, age of menarche, age of menopause, and parity. Inexplicably, there is evidence indicating that ovariectomy prevents the formation of both estrogen receptor (ER)-positive and ER-negative breast cancers, suggesting that ER-negative breast cancers are dependent on ovarian hormones for their formation. To examine the mechanism(s) by which this may be occurring, we investigated the hypothesis that steroid hormones promote the outgrowth of ER-negative cancers by influencing host cell types distinct from the mammary epithelial cells. We used a novel xenograft mouse model of parturition-induced breast carcinoma formation, in which the tumors that arise following pregnancy lack the expression of nuclear hormone receptors, thereby recapitulating many clinical cases of this disease. Despite lacking ER expression, the tumors arising following pregnancy in this model require circulating estrogens for their formation. Moreover, increasing the levels of circulating estrogens sufficed to promote the formation and progression of ER-negative cancers, which was accompanied by a systemic increase in host angiogenesis and was attendant with the recruitment of bone marrow-derived stromal cells. Furthermore, bone marrow cells from estrogen-treated mice were sufficient to promote tumor growth. These results reveal a novel mechanism by which estrogens promote the growth of ER-negative cancers.


Nature Protocols | 2006

Reconstruction of human mammary tissues in a mouse model.

David A. Proia; Charlotte Kuperwasser

Establishing a model system that more accurately recapitulates both normal and neoplastic breast epithelial development in rodents is central to studying human breast carcinogenesis. However, the inability of human breast epithelial cells to colonize mouse mammary fat pads is problematic. Considering that the human breast is a more fibrous tissue than is the adipose-rich stroma of the murine mammary gland, our group sought to bypass the effects of the rodent microenvironment through incorporation of human stromal fibroblasts. We have been successful in reproducibly recreating functionally normal breast tissues from reduction mammoplasty tissues, in what we term the human-in-mouse (HIM) model. Here we describe our relatively simple and inexpensive techniques for generating this orthotopic xenograft model. Whether the model is to be applied for understanding normal human breast development or tumorigenesis, investigators with minimal animal surgery skills, basic cell culture techniques and access to human breast tissue will be able to generate humanized mouse glands within 3 months. Clearing the mouse of its endogenous epithelium with subsequent stromal humanization takes 1 month. The subsequent implantation of co-mixed human epithelial cells and stromal cells occurs 2 weeks after humanization, so investigators should expect to observe the desired outgrowths 2 months afterward. As a whole, this model system has the potential to improve the understanding of crosstalk between tissue stroma and the epithelium as well as factors involved in breast stem cell biology tumor initiation and progression.


Molecular Cancer Therapeutics | 2012

Targeting KRAS-Mutant Non–Small Cell Lung Cancer with the Hsp90 Inhibitor Ganetespib

Jaime Acquaviva; Donald L. Smith; Jim Sang; Julie C. Friedland; Suqin He; Manuel Sequeira; Chaohua Zhang; Yumiko Wada; David A. Proia

Mutant KRAS is a feature of more than 25% of non–small cell lung cancers (NSCLC) and represents one of the most prevalent oncogenic drivers in this disease. NSCLC tumors with oncogenic KRAS respond poorly to current therapies, necessitating the pursuit of new treatment strategies. Targeted inhibition of the molecular chaperone Hsp90 results in the coordinated blockade of multiple oncogenic signaling pathways in tumor cells and has thus emerged as an attractive avenue for therapeutic intervention in human malignancies. Here, we examined the activity of ganetespib, a small-molecule inhibitor of Hsp90 currently in clinical trials for NSCLCs in a panel of lung cancer cell lines harboring a diverse spectrum of KRAS mutations. In vitro, ganetespib was potently cytotoxic in all lines, with concomitant destabilization of KRAS signaling effectors. Combinations of low-dose ganetespib with MEK or PI3K/mTOR inhibitors resulted in superior cytotoxic activity than single agents alone in a subset of mutant KRAS cells, and the antitumor efficacy of ganetespib was potentiated by cotreatment with the PI3K/mTOR inhibitor BEZ235 in A549 xenografts in vivo. At the molecular level, ganetespib suppressed activating feedback signaling loops that occurred in response to MEK and PI3K/mTOR inhibition, although this activity was not the sole determinant of combinatorial benefit. In addition, ganetespib sensitized mutant KRAS NSCLC cells to standard-of-care chemotherapeutics of the antimitotic, topoisomerase inhibitor, and alkylating agent classes. Taken together, these data underscore the promise of ganetespib as a single-agent or combination treatment in KRAS-driven lung tumors. Mol Cancer Ther; 11(12); 2633–43. ©2012 AACR.


Investigational New Drugs | 2012

Synergistic activity of the Hsp90 inhibitor ganetespib with taxanes in non-small cell lung cancer models

David A. Proia; Jim Sang; Suqin He; Donald L. Smith; Manuel Sequeira; Chaohua Zhang; Yuan Liu; Shuxia Ye; Dan Zhou; Ronald K. Blackman; Kevin Foley; Keizo Koya; Yumiko Wada

SummarySystemic chemotherapy using two-drug platinum-based regimens for the treatment of advanced stage non-small cell lung cancer (NSCLC) has largely reached a plateau of effectiveness. Accordingly, efforts to improve survival and quality of life outcomes have more recently focused on the use of molecularly targeted agents, either alone or in combination with standard of care therapies such as taxanes. The molecular chaperone heat shock protein 90 (Hsp90) represents an attractive candidate for therapeutic intervention, as its inhibition results in the simultaneous blockade of multiple oncogenic signaling cascades. Ganetespib is a non-ansamycin inhibitor of Hsp90 currently under clinical evaluation in a number of human malignancies, including NSCLC. Here we show that ganetespib potentiates the cytotoxic activity of the taxanes paclitaxel and docetaxel in NSCLC models. The combination of ganetespib with paclitaxel, docetaxel or another microtubule-targeted agent vincristine resulted in synergistic antiproliferative effects in the H1975 cell line in vitro. These benefits translated to improved efficacy in H1975 xenografts in vivo, with significantly enhanced tumor growth inhibition observed in combination with paclitaxel and tumor regressions seen with docetaxel. Notably, concurrent exposure to ganetespib and docetaxel improved antitumor activity in 5 of 6 NSCLC xenograft models examined. Our data suggest that the improved therapeutic indices are likely to be mechanistically multifactorial, including loss of pro-survival signaling and direct cell cycle effects resulting from Hsp90 modulation by ganetespib. Taken together, these findings provide preclinical evidence for the use of this combination to treat patients with advanced NSCLC.


Cancer Research | 2014

Ganetespib and HSP90: Translating Preclinical Hypotheses into Clinical Promise

David A. Proia; Richard C. Bates

As with many physiologic processes that become subverted during tumorigenesis, the chaperoning activity of heat shock protein 90 (HSP90) is often exploited by cancer cells to confer aberrant proliferative, survival, and/or metastatic potential. Functional inhibition of HSP90 results in the degradation of its client proteins, in turn providing a means to concomitantly disrupt multiple oncogenic signaling cascades through one molecular target. Pharmacologic blockade of HSP90 has, therefore, emerged as an innovative and multifaceted approach for the development of new antineoplastic agents. However, no HSP90 inhibitors are currently approved for cancer therapy and the full promise of this class of agents is yet to be realized. This review focuses on the preclinical activity profile of ganetespib, a potent small-molecule inhibitor of HSP90, the characterization of which has provided important frameworks for the optimal design and application of HSP90 inhibitor-based strategies in a variety of cancer types. Beyond client protein-driven tumors, ganetespib can also potentiate the effects of other molecularly targeted and standard-of-care therapeutics while simultaneously overcoming drug resistance in multiple tumor types, thereby positioning this compound as the leading HSP90 inhibitor currently under clinical development.


Cell Cycle | 2005

Stroma: Tumor Agonist or Antagonist

David A. Proia; Charlotte Kuperwasser

Extensive research has been conducted over several decades understanding the genetic changes that occur in normal cells to promote them towards a transformed state. However, it is becoming increasingly apparent that carcinoma growth requires more complex interactions for development and progression. Since tissue epithelium is composed of highly specialized cells that orchestrate specific activities, their proper development and function is highly dependent on contextual signals from the stroma. As such, it is conceivable that carcinoma development should also parallel these needs. In light of our recent evidence combined with established work demonstrating the role of the tissue stromal environment in cancer development, it is evident that tissue stroma exhibits context specific tumor suppressive and tumor-promoting abilities that serve to regulate dysfunction and neoplastic growth of the epithelium.


International Journal of Oncology | 2013

Potent activity of the Hsp90 inhibitor ganetespib in prostate cancer cells irrespective of androgen receptor status or variant receptor expression

Suqin He; Chaohua Zhang; Ayesha A. Shafi; Manuel Sequeira; Jaime Acquaviva; Julie C. Friedland; Jim Sang; Donald L. Smith; Nancy L. Weigel; Yumiko Wada; David A. Proia

Androgen ablation therapy represents the first line of therapeutic intervention in men with advanced or recurrent prostate tumors. However, the incomplete efficacy and lack of durable response to this clinical strategy highlights an urgent need for alternative treatment options to improve patient outcomes. Targeting the molecular chaperone heat shock protein 90 (Hsp90) represents a potential avenue for therapeutic intervention as its inhibition results in the coordinate blockade of multiple oncogenic signaling pathways in cancer cells. Moreover, Hsp90 is essential for the stability and function of numerous client proteins, a number of which have been causally implicated in the pathogenesis of prostate cancer, including the androgen receptor (AR). Here, we examined the preclinical activity of ganetespib, a small molecule inhibitor of Hsp90, in a panel of prostate cancer cell lines. Ganetespib potently decreased viability in all lines, irrespective of their androgen sensitivity or receptor status, and more effectively than the ansamycin inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). Interestingly, while ganetespib exposure decreased AR expression and activation, the constitutively active V7 truncated isoform of the receptor was unaffected by Hsp90 inhibition. Mechanistically, ganetespib exerted concomitant effects on mitogenic and survival pathways, as well as direct modulation of cell cycle regulators, to induce growth arrest and apoptosis. Further, ganetespib displayed robust antitumor efficacy in both AR-negative and positive xenografts, including those derived from the 22Rv1 prostate cancer cell line that co-expresses full-length and variant receptors. Together these data suggest that further investigation of ganetespib as a new therapeutic treatment for prostate cancer patients is warranted.


Molecular Cancer Therapeutics | 2014

Overcoming Acquired BRAF Inhibitor Resistance in Melanoma via Targeted Inhibition of Hsp90 with Ganetespib

Jaime Acquaviva; Donald L. Smith; John-Paul Jimenez; Chaohua Zhang; Manuel Sequeira; Suqin He; Jim Sang; Richard C. Bates; David A. Proia

Activating BRAF kinase mutations serve as oncogenic drivers in over half of all melanomas, a feature that has been exploited in the development of new molecularly targeted approaches to treat this disease. Selective BRAFV600E inhibitors, such as vemurafenib, typically induce initial, profound tumor regressions within this group of patients; however, durable responses have been hampered by the emergence of drug resistance. Here, we examined the activity of ganetespib, a small-molecule inhibitor of Hsp90, in melanoma lines harboring the BRAFV600E mutation. Ganetespib exposure resulted in the loss of mutant BRAF expression and depletion of mitogen-activated protein kinase and AKT signaling, resulting in greater in vitro potency and antitumor efficacy compared with targeted BRAF and MAP–ERK kinase (MEK) inhibitors. Dual targeting of Hsp90 and BRAFV600E provided combinatorial benefit in vemurafenib-sensitive melanoma cells in vitro and in vivo. Importantly, ganetespib overcame mechanisms of intrinsic and acquired resistance to vemurafenib, the latter of which was characterized by reactivation of extracellular signal-regulated kinase (ERK) signaling. Continued suppression of BRAFV600E by vemurafenib potentiated sensitivity to MEK inhibitors after acquired resistance had been established. Ganetespib treatment reduced, but not abolished, elevations in steady-state ERK activity. Profiling studies revealed that the addition of a MEK inhibitor could completely abrogate ERK reactivation in the resistant phenotype, with ganetespib displaying superior combinatorial activity over vemurafenib. Moreover, ganetespib plus the MEK inhibitor TAK-733 induced tumor regressions in vemurafenib-resistant xenografts. Overall these data highlight the potential of ganetespib as a single-agent or combination treatment in BRAFV600E-driven melanoma, particularly as a strategy to overcome acquired resistance to selective BRAF inhibitors. Mol Cancer Ther; 13(2); 353–63. ©2014 AACR.


Investigational New Drugs | 2014

Targeted inhibition of Hsp90 by ganetespib is effective across a broad spectrum of breast cancer subtypes

Julie Friedland; Donald L. Smith; Jim Sang; Jaime Acquaviva; Suqin He; Chaohua Zhang; David A. Proia

SummaryHeat shock protein 90 (Hsp90) is a molecular chaperone essential for the stability and function of multiple cellular client proteins, a number of which have been implicated in the pathogenesis of breast cancer. Here we undertook a comprehensive evaluation of the activity of ganetespib, a selective Hsp90 inhibitor, in this malignancy. With low nanomolar potency, ganetespib reduced cell viability in a panel of hormone receptor-positive, HER2-overexpressing, triple-negative and inflammatory breast cancer cell lines in vitro. Ganetespib treatment induced a rapid and sustained destabilization of multiple client proteins and oncogenic signaling pathways and even brief exposure was sufficient to induce and maintain suppression of HER2 levels in cells driven by this receptor. Indeed, HER2-overexpressing BT-474 cells were comparatively more sensitive to ganetespib than the dual HER2/EGFR tyrosine kinase inhibitor lapatinib in three-dimensional culture. Ganetespib exposure caused pleiotropic effects in the inflammatory breast cancer line SUM149, including receptor tyrosine kinases, MAPK, AKT and mTOR signaling, transcription factors and proteins involved in cell cycle, stress and apoptotic regulation, as well as providing combinatorial benefit with lapatinib in these cells. This multimodal activity translated to potent antitumor efficacy in vivo, suppressing tumor growth in MCF-7 and MDA-MB-231 xenografts and inducing tumor regression in the BT-474 model. Thus, ganetespib potently inhibits Hsp90 leading to the degradation of multiple clinically-validated oncogenic client proteins in breast cancer cells, encompassing the broad spectrum of molecularly-defined subtypes. This preclinical activity profile suggests that ganetespib may offer considerable promise as a new therapeutic candidate for patients with advanced breast cancers.

Collaboration


Dive into the David A. Proia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge