Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Schreier is active.

Publication


Featured researches published by David A. Schreier.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Direct and indirect protection of right ventricular function by estrogen in an experimental model of pulmonary arterial hypertension.

Aiping Liu; David A. Schreier; Lian Tian; Jens C. Eickhoff; Zhijie Wang; Timothy A. Hacker; Naomi C. Chesler

Pulmonary arterial hypertension (PAH) results in right ventricular (RV) dysfunction and failure. Paradoxically, women are more frequently diagnosed with PAH but have better RV systolic function and survival rates than men. The mechanisms by which sex differences alter PAH outcomes remain unknown. Here, we sought to study the role of estrogen in RV functional remodeling in response to PAH. The SU5416-hypoxia (SuHx) mouse model of PAH was used. To study the role of estrogen, female mice were ovariectomized and then treated with estrogen or placebo. SuHx significantly increased RV afterload and resulted in RV hypertrophy. Estrogen treatment attenuated the increase in RV afterload compared with the untreated group (effective arterial elastance: 2.3 ± 0.1 mmHg/μl vs. 3.2 ± 0.3 mmHg/μl), and this was linked to preserved pulmonary arterial compliance (compliance: 0.013 ± 0.001 mm(2)/mmHg vs. 0.010 ± 0.001 mm(2)/mmHg; P < 0.05) and decreased distal muscularization. Despite lower RV afterload in the estrogen-treated SuHx group, RV contractility increased to a similar level as the placebo-treated SuHx group, suggesting an inotropic effect of estrogen on RV myocardium. Consequently, when compared with the placebo-treated SuHx group, estrogen improved RV ejection fraction and cardiac output (ejection fraction: 57 ± 2% vs. 44 ± 2% and cardiac output: 9.7 ± 0.4 ml/min vs. 7.6 ± 0.6 ml/min; P < 0.05). Our study demonstrates for the first time that estrogen protects RV function in the SuHx model of PAH in mice directly by stimulating RV contractility and indirectly by protecting against pulmonary vascular remodeling. These results underscore the therapeutic potential of estrogen in PAH.


Physiological Reports | 2013

Progressive right ventricular functional and structural changes in a mouse model of pulmonary arterial hypertension

Zhijie Wang; David A. Schreier; Timothy A. Hacker; Naomi C. Chesler

Right ventricle (RV) dysfunction occurs with progression of pulmonary arterial hypertension (PAH) due to persistently elevated ventricular afterload. A critical knowledge gap is the molecular mechanisms that govern the transition from RV adaptation to RV maladaptation, which leads to failure. Here, we hypothesize that the recently established mouse model of PAH, via hypoxia and SU5416 treatment (HySu), captures that transition from adaptive to maladaptive RV remodeling including impairments in RV function and decreases in the efficiency of RV interactions with the pulmonary vasculature. To test this hypothesis, we exposed C57BL6 male mice to 0 (control), 14, 21, and 28 days of HySu and then obtained synchronized RV pressure and volume measurements in vivo. With increasing HySu exposure duration, arterial afterload increased monotonically, leading to a continuous increase in RV stroke work, RV fibrosis, and RV wall stiffening (P < 0.05). RV contractility increased at 14 days of HySu exposure and then plateaued (P < 0.05). As a result, ventricular–vascular coupling efficiency tended to increase at 14 days and then decrease. Our results suggest that RV remodeling may begin to shift from adaptive to maladaptive with increasing duration of HySu exposure, which would mimic changes in RV function with PAH progression found clinically. However, for the duration of HySu exposure used here, no drop in cardiac output was found. We conclude that the establishment of a mouse model for overt RV failure due to PAH remains an important task.


Journal of Biomechanical Engineering-transactions of The Asme | 2013

The Role of Collagen Synthesis in Ventricular and Vascular Adaptation to Hypoxic Pulmonary Hypertension

David A. Schreier; Timothy A. Hacker; Gouqing Song; Naomi C. Chesler

Pulmonary arterial hypertension (PAH) is a rapidly fatal disease in which mortality is typically due to right ventricular (RV) failure. An excellent predictor of mortality in PAH is proximal pulmonary artery stiffening, which is mediated by collagen accumulation in hypoxia-induced pulmonary hypertension (HPH) in mice. We sought to investigate the impact of limiting vascular and ventricular collagen accumulation on RV function and the hemodynamic coupling efficiency between the RV and pulmonary vasculature. Inbred mice were exposed to chronic hypoxia for 10 days with either no treatment (HPH) or with treatment with a proline analog that impairs collagen synthesis (CHOP-PEG; HPH + CP). Both groups were compared to control mice (CTL) exposed only to normoxia (no treatment). An admittance catheter was used to measure pressure-volume loops at baseline and during vena cava occlusion, with mice ventilated with either room air or 8% oxygen, from which pulmonary hemodynamics, RV function, and ventricular-vascular coupling efficiency (ηvvc) were calculated. Proline analog treatment limited increases in RV afterload (neither effective arterial elastance Ea nor total pulmonary vascular resistance significantly increased compared to CTL with CHOP-PEG), limited the development of pulmonary hypertension (CHOP-PEG reduced right ventricular systolic pressure by 10% compared to HPH, p < 0.05), and limited RV hypertrophy (CHOP-PEG reduced RV mass by 18% compared to HPH, p < 0.005). In an acutely hypoxic state, treatment improved RV function (CHOP-PEG increased end-systolic elastance Ees by 43%, p < 0.05) and maintained ηvvc at control, room air levels. CHOP-PEG also decreased lung collagen content by 12% measured biochemically compared to HPH (p < 0.01), with differences evident in large and small pulmonary arteries by histology. Our results demonstrate that preventing new collagen synthesis limits pulmonary hypertension development by reducing collagen accumulation in the pulmonary arteries that affect RV afterload. In particular, the proline analog limited structural and functional changes in distal pulmonary arteries in this model of early and somewhat mild pulmonary hypertension. We conclude that collagen plays an important role in small pulmonary artery remodeling and, thereby, affects RV structure and function changes induced by chronic hypoxia.


Journal of Applied Physiology | 2014

Impact of increased hematocrit on right ventricular afterload in response to chronic hypoxia

David A. Schreier; Timothy A. Hacker; Kendall Hunter; Jens Eickoff; Aiping Liu; Gouqing Song; Naomi C. Chesler

Chronic hypoxia causes chronic mountain sickness through hypoxia-induced pulmonary hypertension (HPH) and increased hematocrit. Here, we investigated the impact of increased hematocrit and HPH on right ventricular (RV) afterload via pulmonary vascular impedance. Mice were exposed to chronic normobaric hypoxia (10% oxygen) for 10 (10H) or 21 days (21H). After baseline hemodynamic measurements, ∼500 μl of blood were extracted and replaced with an equal volume of hydroxyethylstarch to normalize hematocrit and all hemodynamic measurements were repeated. In addition, ∼500 μl of blood were extracted and replaced in control mice with an equal volume of 90% hematocrit blood. Chronic hypoxia increased input resistance (Z0 increased 82% in 10H and 138% in 21H vs. CTL; P < 0.05) and characteristic impedance (ZC increased 76% in 10H and 109% in 21H vs. CTL; P < 0.05). Hematocrit normalization did not decrease mean pulmonary artery pressure but did increase cardiac output such that both Z0 and ZC decreased toward control levels. Increased hematocrit in control mice did not increase pressure but did decrease cardiac output such that Z0 increased. The paradoxical decrease in ZC with an acute drop in hematocrit and no change in pressure are likely due to inertial effects secondary to the increase in cardiac output. A novel finding of this study is that an increase in hematocrit affects the pulsatile RV afterload in addition to the steady RV afterload (Z0). Furthermore, our results highlight that the conventional interpretation of ZC as a measure of proximal artery stiffness is not valid in all physiological and pathological states.


Frontiers in Physiology | 2013

Analysis of cardiovascular dynamics in pulmonary hypertensive C57BL6/J mice

Shivendra G. Tewari; Scott M. Bugenhagen; Zhijie Wang; David A. Schreier; Brian E. Carlson; Naomi C. Chesler; Daniel A. Beard

A computer model was used to analyze data on cardiac and vascular mechanics from C57BL6/J mice exposed to 0 (n = 4), 14 (n = 6), 21 (n = 8) and 28 (n = 7) days of chronic hypoxia and treatment with the VEGF receptor inhibitor SUGEN (HySu) to induce pulmonary hypertension. Data on right ventricular pressure and volume, and systemic arterial pressure obtained before, during, and after inferior vena cava occlusion were analyzed using a mathematical model of realistic ventricular mechanics coupled with a simple model of the pulmonary and systemic vascular systems. The model invokes a total of 26 adjustable parameters, which were estimated based on least-squares fitting of the data. Of the 26 adjustable parameters, 14 were set to globally constant values for the entire data set. It was necessary to adjust the remaining 12 parameters to match data from all experimental groups. Of these 12 individually adjusted parameters, three parameters representing pulmonary vascular resistance, pulmonary arterial elastance, and pulmonary arterial narrowing were found to significantly change in HySu-induced remodeling. Model analysis shows a monotonic change in these parameters as disease progressed, with approximately 130% increase in pulmonary resistance, 70% decrease in unstressed pulmonary arterial volume, and 110% increase in pulmonary arterial elastance in the 28-day group compared to the control group. These changes are consistent with prior experimental measurements. Furthermore, the 28-day data could be explained only after increasing the passive elastance of the right free wall compared to the value used for the other data sets, which is likely a consequence of the increased RV collagen accumulation found experimentally. These findings may indicate a compensatory remodeling followed by pathological remodeling of the right ventricle in HySu-induced pulmonary hypertension.


Journal of Biomechanical Engineering-transactions of The Asme | 2016

Increased Red Blood Cell Stiffness Increases Pulmonary Vascular Resistance and Pulmonary Arterial Pressure

David A. Schreier; Omid Forouzan; Timothy A. Hacker; John P. Sheehan; Naomi C. Chesler

Patients with sickle cell anemia (SCD) and pulmonary hypertension (PH) have a significantly increased risk of sudden death compared to patients with SCD alone. Sickled red blood cells (RBCs) are stiffer, more dense, more frequently undergo hemolysis, and have a sixfold shorter lifespan compared to normal RBCs. Here, we sought to investigate the impact of increased RBC stiffness, independent of other SCD-related biological and mechanical RBC abnormalities, on the hemodynamic changes that ultimately cause PH and increase mortality in SCD. To do so, pulmonary vascular impedance (PVZ) measures were recorded in control C57BL6 mice before and after ∼50 μl of blood (Hct = 45%) was extracted and replaced with an equal volume of blood containing either untreated RBCs or RBCs chemically stiffened with glutaraldehyde (Hct = 45%). Chemically stiffened RBCs increased mean pulmonary artery pressure (mPAP) (13.5 ± 0.6 mmHg at baseline to 23.2 ± 0.7 mmHg after the third injection), pulmonary vascular resistance (PVR) (1.23 ± 0.11 mmHg*min/ml at baseline to 2.24 ± 0.14 mmHg*min/ml after the third injection), and wave reflections (0.31 ± 0.02 at baseline to 0.43 ± 0.03 after the third injection). Chemically stiffened RBCs also decreased cardiac output, but did not change hematocrit, blood viscosity, pulmonary arterial compliance, or heart rate. The main finding of this study is that increased RBC stiffness alone affects pulmonary pulsatile hemodynamics, which suggests that RBC stiffness plays an important role in the development of PH in patients with SCD.


Journal of Applied Physiology | 2018

Organ-level right ventricular dysfunction with preserved Frank-Starling mechanism in a mouse model of pulmonary arterial hypertension

Zhijie Wang; Jitandrakumar R. Patel; David A. Schreier; Timothy A. Hacker; Richard L. Moss; Naomi C. Chesler

Pulmonary arterial hypertension (PAH) is a rapidly fatal disease in which mortality is due to right ventricular (RV) failure. It is unclear whether RV dysfunction initiates at the organ level or the subcellular level or both. We hypothesized that chronic pressure overload-induced RV dysfunction begins at the organ level with preserved Frank-Starling mechanism in myocytes. To test this hypothesis, we induced PAH with Sugen + hypoxia (HySu) in mice and measured RV whole organ and subcellular functional changes by in vivo pressure-volume measurements and in vitro trabeculae length-tension measurements, respectively, at multiple time points for up to 56 days. We observed progressive changes in RV function at the organ level: in contrast to early PAH (14-day HySu), in late PAH (56-day HySu) ejection fraction and ventricular-vascular coupling were decreased. At the subcellular level, direct measurements of myofilament contraction showed that RV contractile force was similarly increased at any stage of PAH development. Moreover, cross-bridge kinetics were not changed and length dependence of force development (Frank-Starling relation) were not different from baseline in any PAH group. Histological examinations confirmed increased cardiomyocyte cross-sectional area and decreased von Willebrand factor expression in RVs with PAH. In summary, RV dysfunction developed at the organ level with preserved Frank-Starling mechanism in myofilaments, and these results provide novel insight into the development of RV dysfunction, which is critical to understanding the mechanisms of RV failure. NEW & NOTEWORTHY A multiscale investigation of pulmonary artery pressure overload in mice showed time-dependent organ-level right ventricular (RV) dysfunction with preserved Frank-Starling relations in myofilaments. Our findings provide novel insight into the development of RV dysfunction, which is critical to understanding mechanisms of RV failure.


Physiological Measurement | 2017

Characteristic impedance: frequency or time domain approach?

Muhammad Umar Qureshi; Mitchel Colebank; David A. Schreier; Diana Marcela Tabima Martinez; Mansoor A. Haider; Naomi C. Chesler; Mette S. Olufsen

OBJECTIVE Characteristic impedance (Zc) is an important component in the theory of hemodynamics. It is a commonly used metric of proximal arterial stiffness and pulse wave velocity. Calculated using simultaneously measured dynamic pressure and flow data, estimates of characteristic impedance can be obtained using methods based on frequency or time domain analysis. Applications of these methods under different physiological and pathological conditions in species with different body sizes and heart rates show that the two approaches do not always agree. In this study, we have investigated the discrepancies between frequency and time domain estimates accounting for uncertainties associated with experimental processes and physiological conditions. APPROACH We have used published data measured in different species including humans, dogs, and mice to investigate: (a) the effects of time delay and signal noise in the pressure-flow data, (b) uncertainties about the blood flow conditions, (c) periodicity of the cardiac cycle versus the breathing cycle, on the frequency and time domain estimates of Zc, and (d) if discrepancies observed under different hemodynamic conditions can be eliminated. Main results and Significance: We have shown that the frequency and time domain estimates are not equally sensitive to certain characteristics of hemodynamic signals including phase lag between pressure and flow, signal to noise ratio and the end of systole retrograde flow. The discrepancies between two types of estimates are inherent due to their intrinsically different mathematical expressions and therefore it is impossible to define a criterion to resolve such discrepancies. Considering the interpretation and role of Zc as an important hemodynamic parameter, we suggest that the frequency and time domain estimates should be further assessed as two different hemodynamic parameters in a future study.


Journal of Applied Physiology | 2017

Pulmonary vascular collagen content, not cross-linking, contributes to right ventricular pulsatile afterload and overload in early pulmonary hypertension

Zhijie Wang; David A. Schreier; Hinnah Abid; Timothy A. Hacker; Naomi C. Chesler

Hypoxic pulmonary hypertension (HPH) is associated with pulmonary artery (PA) remodeling and right ventricular (RV) overload. We have previously uncovered collagen-mediated mechanisms of proximal PA stiffening in early HPH by manipulating collagen degradation and cross-linking using a transgenic mouse strain and a potent collagen cross-link inhibitor, β-aminopropionitrile (BAPN). However, the roles of collagen in distal PA remodeling, overall RV afterload, and RV hypertrophy in HPH remain unknown. Here, we used the same experimental strategy to investigate the effect of pulmonary vascular collagen content and cross-linking on steady and pulsatile RV afterload and on RV hypertrophy in early HPH. Collagenase-resistant mice (Col1a1R/R) and their littermate controls (Col1a1+/+) were exposed to normobaric hypoxia for 10 days with or without BAPN treatment. In vivo pulmonary vascular impedance, a comprehensive measure of RV afterload, was measured via simultaneous RV catheterization and echocardiography. Morphology and collagen accumulation were examined using histological techniques and ELISA in lungs and RVs. In both mouse strains, BAPN did not limit increases in pulmonary arterial pressure or pulmonary vascular resistance, indicating a negligible effect of either collagen content or cross-linking on steady RV afterload. However, BAPN prevented the increase in pulse pressure and RV hypertrophy in Col1a1+/+ mice and these effects were absent in Col1a1R/R mice, suggesting a role for PA collagen content, not cross-linking, in the pulsatile RV afterload. Moreover, we found a significant correlation between pulse pressure and RV hypertrophy, indicating an important role for pulsatile RV afterload in RV overload in early HPH. NEW & NOTEWORTHY The present study found an important role for collagen content, but not collagen cross-linking, in the pulsatile right ventricular (RV) afterload, which is correlated with RV hypertrophy. These results uncover a new collagen-mediated mechanical mechanism of RV dysfunction in early pulmonary hypertension progression. Furthermore, our results suggest that measures and metrics of pulsatile hemodynamics such as pulse pressure and pulse wave velocity are potentially important to cardiovascular mortality in patients with pulmonary hypertension.


Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments | 2013

Right Ventricular Dysfunction in Pulmonary Arterial Hypertension: Cellular and Hemodynamic Changes in a Mouse Model

Zhijie Wang; Jitandrakumar R. Patel; David A. Schreier; Richard L. Moss; Timothy A. Hacker; Naomi C. Chesler

Pulmonary arterial hypertension (PAH) is the most severe form of pulmonary hypertension due to its rapid progression to right ventricular (RV) failure. Until the recent combination of chronic hypoxia with VEGF receptor blockage by SU5416 [1], there was no mouse model for severe PAH. This new model (HySu) recapitulates hallmarks of human PAH, especially distal arteriolar neointima formation and obliteration [1]. However, the changes in RV function in this model have not been examined. Here we investigate the hypothesis that the HySu mouse model mimics the progression of RV dysfunction found in PAH clinically from compensatory to maladaptive RV remodeling.Copyright

Collaboration


Dive into the David A. Schreier's collaboration.

Top Co-Authors

Avatar

Naomi C. Chesler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Timothy A. Hacker

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Zhijie Wang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Aiping Liu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jitandrakumar R. Patel

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Richard L. Moss

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hinnah Abid

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jens C. Eickhoff

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge