Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Sinclair is active.

Publication


Featured researches published by David A. Sinclair.


Nature | 2006

Resveratrol improves health and survival of mice on a high-calorie diet.

Joseph A. Baur; Kevin J. Pearson; Nathaniel O Price; Hamish A. Jamieson; Carles Lerin; Avash Kalra; Vinayakumar Prabhu; Joanne S. Allard; Guillermo López-Lluch; Kaitlyn N. Lewis; Paul J. Pistell; Suresh Poosala; Kevin G. Becker; Olivier Boss; Dana M. Gwinn; Mingyi Wang; Sharan Ramaswamy; Kenneth W. Fishbein; Richard G. Spencer; Edward G. Lakatta; David G. Le Couteur; Reuben J. Shaw; Plácido Navas; Pere Puigserver; Donald K. Ingram; Rafael de Cabo; David A. Sinclair

Resveratrol (3,5,4′-trihydroxystilbene) extends the lifespan of diverse species including Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In these organisms, lifespan extension is dependent on Sir2, a conserved deacetylase proposed to underlie the beneficial effects of caloric restriction. Here we show that resveratrol shifts the physiology of middle-aged mice on a high-calorie diet towards that of mice on a standard diet and significantly increases their survival. Resveratrol produces changes associated with longer lifespan, including increased insulin sensitivity, reduced insulin-like growth factor-1 (IGF-I) levels, increased AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) activity, increased mitochondrial number, and improved motor function. Parametric analysis of gene set enrichment revealed that resveratrol opposed the effects of the high-calorie diet in 144 out of 153 significantly altered pathways. These data show that improving general health in mammals using small molecules is an attainable goal, and point to new approaches for treating obesity-related disorders and diseases of ageing.


Nature | 2003

Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan

Konrad T. Howitz; Kevin J. Bitterman; Haim Y. Cohen; Dudley W. Lamming; Siva Lavu; Jason G. Wood; Robert E. Zipkin; Phuong Chung; Anne Kisielewski; Li-Li Zhang; Brandy Scherer; David A. Sinclair

In diverse organisms, calorie restriction slows the pace of ageing and increases maximum lifespan. In the budding yeast Saccharomyces cerevisiae, calorie restriction extends lifespan by increasing the activity of Sir2 (ref. 1), a member of the conserved sirtuin family of NAD+-dependent protein deacetylases. Included in this family are SIR-2.1, a Caenorhabditis elegans enzyme that regulates lifespan, and SIRT1, a human deacetylase that promotes cell survival by negatively regulating the p53 tumour suppressor. Here we report the discovery of three classes of small molecules that activate sirtuins. We show that the potent activator resveratrol, a polyphenol found in red wine, lowers the Michaelis constant of SIRT1 for both the acetylated substrate and NAD+, and increases cell survival by stimulating SIRT1-dependent deacetylation of p53. In yeast, resveratrol mimics calorie restriction by stimulating Sir2, increasing DNA stability and extending lifespan by 70%. We discuss possible evolutionary origins of this phenomenon and suggest new lines of research into the therapeutic use of sirtuin activators.


Nature Reviews Drug Discovery | 2006

Therapeutic potential of resveratrol: the in vivo evidence

Joseph A. Baur; David A. Sinclair

Resveratrol, a constituent of red wine, has long been suspected to have cardioprotective effects. Interest in this compound has been renewed in recent years, first from its identification as a chemopreventive agent for skin cancer, and subsequently from reports that it activates sirtuin deacetylases and extends the lifespans of lower organisms. Despite scepticism concerning its bioavailability, a growing body of in vivo evidence indicates that resveratrol has protective effects in rodent models of stress and disease. Here, we provide a comprehensive and critical review of the in vivo data on resveratrol, and consider its potential as a therapeutic for humans.


Nature | 2004

Sirtuin activators mimic caloric restriction and delay ageing in metazoans.

Jason G. Wood; Blanka Rogina; Siva Lavu; Konrad T. Howitz; Stephen L. Helfand; Marc Tatar; David A. Sinclair

Caloric restriction extends lifespan in numerous species. In the budding yeast Saccharomyces cerevisiae this effect requires Sir2 (ref. 1), a member of the sirtuin family of NAD+-dependent deacetylases. Sirtuin activating compounds (STACs) can promote the survival of human cells and extend the replicative lifespan of yeast. Here we show that resveratrol and other STACs activate sirtuins from Caenorhabditis elegans and Drosophila melanogaster, and extend the lifespan of these animals without reducing fecundity. Lifespan extension is dependent on functional Sir2, and is not observed when nutrients are restricted. Together these data indicate that STACs slow metazoan ageing by mechanisms that may be related to caloric restriction.


Nature | 2007

Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.

Jill Milne; Philip D. Lambert; Simon Schenk; David Carney; Jesse J. Smith; David J. Gagne; Lei Jin; Olivier Boss; Robert B. Perni; Chi B. Vu; Jean E. Bemis; Roger Xie; Jeremy S. Disch; Pui Yee Ng; Joseph J. Nunes; Amy V. Lynch; Hongying Yang; Heidi Galonek; Kristine Israelian; Wendy Choy; Andre Iffland; Siva Lavu; Oliver Medvedik; David A. Sinclair; Jerrold M. Olefsky; Michael R. Jirousek; Peter J. Elliott; Christoph H. Westphal

Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme–peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.


Annual Review of Pathology-mechanisms of Disease | 2010

Mammalian Sirtuins: Biological Insights and Disease Relevance

Marcia C. Haigis; David A. Sinclair

Aging is accompanied by a decline in the healthy function of multiple organ systems, leading to increased incidence and mortality from diseases such as type II diabetes mellitus, neurodegenerative diseases, cancer, and cardiovascular disease. Historically, researchers have focused on investigating individual pathways in isolated organs as a strategy to identify the root cause of a disease, with hopes of designing better drugs. Studies of aging in yeast led to the discovery of a family of conserved enzymes known as the sirtuins, which affect multiple pathways that increase the life span and the overall health of organisms. Since the discovery of the first known mammalian sirtuin, SIRT1, 10 years ago, there have been major advances in our understanding of the enzymology of sirtuins, their regulation, and their ability to broadly improve mammalian physiology and health span. This review summarizes and discusses the advances of the past decade and the challenges that will confront the field in the coming years.


Cell | 1997

Extrachromosomal rDNA Circles— A Cause of Aging in Yeast

David A. Sinclair; Leonard Guarente

Although many cellular and organismal changes have been described in aging individuals, a precise, molecular cause of aging has yet to be found. A prior study of aging yeast mother cells showed a progressive enlargement and fragmentation of the nucleolus. Here we show that these nucleolar changes are likely due to the accumulation of extrachromosomal rDNA circles (ERCs) in old cells and that, in fact, ERCs cause aging. Mutants for sgs1, the yeast homolog of the Werners syndrome gene, accumulate ERCs more rapidly, leading to premature aging and a shorter life span. We speculate on the generality of this molecular cause of aging in higher species, including mammals.


Biochemical Journal | 2007

Sirtuins in mammals: insights into their biological function

Shaday Michan; David A. Sinclair

Sirtuins are a conserved family of proteins found in all domains of life. The first known sirtuin, Sir2 (silent information regulator 2) of Saccharomyces cerevisiae, from which the family derives its name, regulates ribosomal DNA recombination, gene silencing, DNA repair, chromosomal stability and longevity. Sir2 homologues also modulate lifespan in worms and flies, and may underlie the beneficial effects of caloric restriction, the only regimen that slows aging and extends lifespan of most classes of organism, including mammals. Sirtuins have gained considerable attention for their impact on mammalian physiology, since they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. In this review we describe our current understanding of the biological function of the seven mammalian sirtuins, SIRT1-7, and we will also discuss their potential as mediators of caloric restriction and as pharmacological targets to delay and treat human age-related diseases.


Cell Metabolism | 2008

Resveratrol Delays Age-Related Deterioration and Mimics Transcriptional Aspects of Dietary Restriction without Extending Life Span

Kevin J. Pearson; Joseph A. Baur; Kaitlyn N. Lewis; Leonid Peshkin; Nathan L. Price; Nazar Labinskyy; William R. Swindell; Davida Kamara; Robin K. Minor; Evelyn Perez; Hamish A. Jamieson; Yongqing Zhang; Stephen R. Dunn; Kumar Sharma; Nancy Pleshko; Laura A. Woollett; Anna Csiszar; Yuji Ikeno; David G. Le Couteur; Peter J. Elliott; Kevin G. Becker; Plácido Navas; Donald K. Ingram; Norman S. Wolf; Zoltan Ungvari; David A. Sinclair; Rafael de Cabo

A small molecule that safely mimics the ability of dietary restriction (DR) to delay age-related diseases in laboratory animals is greatly sought after. We and others have shown that resveratrol mimics effects of DR in lower organisms. In mice, we find that resveratrol induces gene expression patterns in multiple tissues that parallel those induced by DR and every-other-day feeding. Moreover, resveratrol-fed elderly mice show a marked reduction in signs of aging, including reduced albuminuria, decreased inflammation, and apoptosis in the vascular endothelium, increased aortic elasticity, greater motor coordination, reduced cataract formation, and preserved bone mineral density. However, mice fed a standard diet did not live longer when treated with resveratrol beginning at 12 months of age. Our findings indicate that resveratrol treatment has a range of beneficial effects in mice but does not increase the longevity of ad libitum-fed animals when started midlife.


The EMBO Journal | 2007

SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis

Dohoon Kim; Minh Nguyen; Matthew M. Dobbin; Andre Fischer; Farahnaz Sananbenesi; Joseph T. Rodgers; Ivana Delalle; Joseph A. Baur; Guangchao Sui; Sean M. Armour; Pere Puigserver; David A. Sinclair; Li-Huei Tsai

A progressive loss of neurons with age underlies a variety of debilitating neurological disorders, including Alzheimers disease (AD) and amyotrophic lateral sclerosis (ALS), yet few effective treatments are currently available. The SIR2 gene promotes longevity in a variety of organisms and may underlie the health benefits of caloric restriction, a diet that delays aging and neurodegeneration in mammals. Here, we report that a human homologue of SIR2, SIRT1, is upregulated in mouse models for AD, ALS and in primary neurons challenged with neurotoxic insults. In cell‐based models for AD/tauopathies and ALS, SIRT1 and resveratrol, a SIRT1‐activating molecule, both promote neuronal survival. In the inducible p25 transgenic mouse, a model of AD and tauopathies, resveratrol reduced neurodegeneration in the hippocampus, prevented learning impairment, and decreased the acetylation of the known SIRT1 substrates PGC‐1alpha and p53. Furthermore, injection of SIRT1 lentivirus in the hippocampus of p25 transgenic mice conferred significant protection against neurodegeneration. Thus, SIRT1 constitutes a unique molecular link between aging and human neurodegenerative disorders and provides a promising avenue for therapeutic intervention.

Collaboration


Dive into the David A. Sinclair's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Farine

Laurentian University

View shared research outputs
Top Co-Authors

Avatar

W. Fairbank

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Daniels

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge