David Albuquerque
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Albuquerque.
Molecular Genetics and Genomics | 2015
David Albuquerque; Eric Stice; Raquel Rodríguez-López; Licíno Manco; Clévio Nóbrega
It is well-known that obesity is a complex multifactorial and heterogeneous condition with an important genetic component. Recently, major advances in obesity research emerged concerning the molecular mechanisms contributing to the obese condition. This review outlines several studies and data concerning the genetics and other important factors in the susceptibility risk to develop obesity. Based in the genetic etiology three main categories of obesity are considered: monogenic, syndromic, and common obesity. For the monogenic forms of obesity, the gene causing the phenotype is clearly identified, whereas for the common obesity the loci architecture underlying the phenotype is still being characterized. Given that, in this review we focus mainly in this obesity form, reviewing loci found until now by genome-wide association studies related with the susceptibility risk to develop obesity. Moreover, we also detail the obesity-related loci identified in children and in different ethnic groups, trying to highlight the complexity of the genetics underlying the common obese phenotype. Importantly, we also focus in the evolutionary hypotheses that have been proposed trying to explain how natural selection favored the spread of genes that increase the risk for an obese phenotype and how this predisposition to obesity evolved. Other factors are important in the obesity condition, and thus, we also discuss the epigenetic mechanisms involved in the susceptibility and development of obesity. Covering all these topics we expect to provide a complete and recent perspective about the underlying mechanisms involved in the development and origin of obesity. Only with a full understanding of the factors and mechanisms contributing to obesity, it will be possible to provide and allow the development of new therapeutic approaches to this condition.
PLOS ONE | 2013
Clévio Nóbrega; Isabel Nascimento-Ferreira; Isabel Onofre; David Albuquerque; Hirokazu Hirai; Nicole Déglon; Luís Pereira de Almeida
Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is an autosomal dominantly-inherited neurodegenerative disorder caused by the over-repetition of a CAG codon in the MJD1 gene. This expansion translates into a polyglutamine tract that confers a toxic gain-of-function to the mutant protein – ataxin-3, leading to neurodegeneration in specific brain regions, with particular severity in the cerebellum. No treatment able to modify the disease progression is available. However, gene silencing by RNA interference has shown promising results. Therefore, in this study we investigated whether lentiviral-mediated allele-specific silencing of the mutant ataxin-3 gene, after disease onset, would rescue the motor behavior deficits and neuropathological features in a severely impaired transgenic mouse model of MJD. For this purpose, we injected lentiviral vectors encoding allele-specific silencing-sequences (shAtx3) into the cerebellum of diseased transgenic mice expressing the targeted C-variant of mutant ataxin-3 present in 70% of MJD patients. This variation permits to discriminate between the wild-type and mutant forms, maintaining the normal function of the wild-type allele and silencing only the mutant form. Quantitative analysis of rotarod performance, footprint and activity patterns revealed significant and robust alleviation of gait, balance (average 3-fold increase of rotarod test time), locomotor and exploratory activity impairments in shAtx3-injected mice, as compared to control ones injected with shGFP. An important improvement of neuropathology was also observed, regarding the number of intranuclear inclusions, calbindin and DARPP-32 immunoreactivity, fluorojade B and Golgi staining and molecular and granular layers thickness. These data demonstrate for the first time the efficacy of gene silencing in blocking the MJD-associated motor-behavior and neuropathological abnormalities after the onset of the disease, supporting the use of this strategy for therapy of MJD.
Brain | 2013
Isabel Nascimento-Ferreira; Clévio Nóbrega; Ana Vasconcelos-Ferreira; Isabel Onofre; David Albuquerque; Célia A. Aveleira; Hirokazu Hirai; Nicole Déglon; Luís Pereira de Almeida
Machado-Joseph disease or spinocerebellar ataxia type 3, the most common dominantly-inherited spinocerebellar ataxia, results from translation of the polyglutamine-expanded and aggregation prone ataxin 3 protein. Clinical manifestations include cerebellar ataxia and pyramidal signs and there is no therapy to delay disease progression. Beclin 1, an autophagy-related protein and essential gene for cell survival, is decreased in several neurodegenerative disorders. This study aimed at evaluating if lentiviral-mediated beclin 1 overexpression would rescue motor and neuropathological impairments when administered to pre- and post-symptomatic lentiviral-based and transgenic mouse models of Machado-Joseph disease. Beclin 1-mediated significant improvements in motor coordination, balance and gait with beclin 1-treated mice equilibrating longer periods in the Rotarod and presenting longer and narrower footprints. Furthermore, in agreement with the improvements observed in motor function beclin 1 overexpression prevented neuronal dysfunction and neurodegeneration, decreasing formation of polyglutamine-expanded aggregates, preserving Purkinje cell arborization and immunoreactivity for neuronal markers. These data show that overexpression of beclin 1 in the mouse cerebellum is able to rescue and hinder the progression of motor deficits when administered to pre- and post-symptomatic stages of the disease.
PLOS ONE | 2013
David Albuquerque; Clévio Nóbrega; Licínio Manco
Background Several studies have reported an association between single nucleotide polymorphisms in the first intron of the FTO gene and body mass index (BMI) or obesity. However, this association has not yet been studied among the Portuguese population. This study aims to assess the association of three FTO polymorphisms (rs1861868, rs1421085 and rs9939609) with obesity-related outcomes in a sample of Portuguese children. Methods We examined a total of 730 children, 256 normal-weight (55.9% girls), 320 overweight (45.3% girls) and 154 obese (53.2% girls), aging from 6 to 12-years-old, recruited randomly from public schools in the central region of Portugal. DNA samples were genotyped for the three polymorphisms by allelic discrimination TaqMan assay. Association of the FTO polymorphisms with several anthropometric traits was investigated. Additionally, we tested association with the risk of obesity using overweight and obese vs. normal-weight children. Results We found significant associations of rs9939609 and rs1421085 polymorphisms with weight, BMI, BMI Z-score, waist circumference and hip circumference, even after age and gender adjustment (p<0.05 in all traits). For rs1861868 polymorphism, marginally significant associations were obtained with weight (p = 0.081) and BMI (p = 0.096) after adjustment for age and gender. In case-control studies, both rs9939609 and rs1421085 polymorphisms were significantly associated with obesity (OR 1.97; 95% CI, 1.08–3.59; p = 0.026; OR 2.11; 95% CI, 1.17–3.81; p = 0.013, respectively) but not with overweight (p>0.05). Haplotype analyses identified two combinations (ACA and GCA) associated with a higher risk of obesity (OR 1.53; 95% CI, 1.06–2.22; p = 0.023; OR 1.73; 95% CI, 1.06–2.87; p = 0.030, respectively). Conclusions This study provides the first evidence for the association of FTO polymorphisms with anthropometric traits and risk of obesity in Portuguese children.
Journal of Human Genetics | 2014
David Albuquerque; Clévio Nóbrega; Raquel Rodríguez-López; Licínio Manco
At least 52 genetic loci were associated with obesity-related traits. However, little is known about the genetic basis of obesity among children. This study aims to test whether 10 polymorphisms in obesity-related genes methionine sulfoxide reductase A (MSRA), transcription factor AP-2 beta (TFAP2B), melanocortin 4 receptor (MC4R), neurexin 3 (NRXN3), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A), transmembrane protein 18 (TMEM18), homolog of S. cerevisiae Sec16 (SEC16B), homeobox B5 (HOXB5) and olfactomedin 4 (OLFM4) are associated with the risk of obesity in Portuguese children. A total of 730 children aging from 6 to 12 years old, recruited randomly from public schools in Portugal, were analysed. Anthropometric measurements were obtained and children were classified into three phenotypic groups, normal weight (n=256), overweight (n=320) and obese (n=154), according to the International Obesity Task Force cutoffs. Polymorphisms were genotyped by allelic discrimination TaqMan assays. The MC4R rs12970134 polymorphism was nominally associated with body mass index (BMI) (P=0.035), BMI Z-score (P=0.043) and waist circumference (P=0.020), and borderline associated with weight (P=0.053). Near nominal associations were also found for the PPARGC1A rs8192678 polymorphism with weight (P=0.061), and for the MSRA rs545854 polymorphism with BMI (P=0.055) and BMI Z-score (P=0.056). Furthermore, logistic regression showed that MC4R rs12970134 and TFAP2B rs987237 were nominally, respectively, associated (P=0.029) and borderline associated (P=0.056) with the obese phenotype. This study highlighted the possible association of MC4R, PPARGC1A, MSRA and TFAP2B polymorphisms with several obesity-related traits in a sample of Portuguese children. The two significant associated TFAP2B rs987237 and MC4R rs12970134 polymorphisms showed an opposite direction of effect to that in the original reports.
PLOS ONE | 2014
Clévio Nóbrega; Isabel Nascimento-Ferreira; Isabel Onofre; David Albuquerque; Nicole Déglon; Luís Pereira de Almeida
Machado-Joseph disease or Spinocerebellar ataxia type 3 is a progressive fatal neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Recent studies demonstrate that RNA interference is a promising approach for the treatment of Machado-Joseph disease. However, whether gene silencing at an early time-point is able to prevent the appearance of motor behavior deficits typical of the disease when initiated before onset of the disease had not been explored. Here, using a lentiviral-mediated allele-specific silencing of mutant ataxin-3 in an early pre-symptomatic cerebellar mouse model of Machado-Joseph disease we show that this strategy hampers the development of the motor and neuropathological phenotypic characteristics of the disease. At the histological level, the RNA-specific silencing of mutant ataxin-3 decreased formation of mutant ataxin-3 aggregates, preserved Purkinje cell morphology and expression of neuronal markers while reducing cell death. Importantly, gene silencing prevented the development of impairments in balance, motor coordination, gait and hyperactivity observed in control mice. These data support the therapeutic potential of RNA interference for Machado-Joseph disease and constitute a proof of principle of the beneficial effects of early allele-specific silencing for therapy of this disease.
Brain | 2015
Clévio Nóbrega; Sara Carmo-Silva; David Albuquerque; Ana Vasconcelos-Ferreira; Udaya-Geetha Vijayakumar; Liliana Mendonça; Hirokazu Hirai; Luís Pereira de Almeida
Machado-Joseph disease is a progressive neurodegenerative disorder associated with the polyQ-expanded ataxin-3 (encoded by ATXN3), for which no therapy is available. With the aim of clarifying the mechanism of neurodegeneration, we hypothesized that the abnormally long polyQ tract would interact aberrantly with ataxin-2 (encoded by ATXN2), another polyQ protein whose function has recently been linked to translational regulation. Using patients samples and cellular and animals models we found that in Machado-Joseph disease: (i) ataxin-2 levels are reduced; and (ii) its subcellular localization is changed towards the nucleus. Restoring ataxin-2 levels by lentiviral-mediated overexpression: (i) reduced mutant ataxin-3 levels; and (ii) rescued behaviour defects and neuropathology in a transgenic mouse model of Machado-Joseph disease. Conversely (i) mutating the ataxin-2 motif that enables binding to its natural interactor and translation activator poly(A)-binding protein; or (ii) overexpressing poly(A)-binding protein, had opposite effects, increasing mutant ataxin-3 translation and aggregation. This work suggests that in Machado-Joseph disease, mutant ataxin-3 drives an abnormal reduction of ataxin-2 levels, which overactivates poly(A)-binding protein, increases translation of mutant ataxin-3 and other proteins and aggravates Machado-Joseph disease. Re-establishment of ataxin-2 levels reduces mutant ataxin-3 and alleviates Machado-Joseph disease pathogenesis opening a new avenue for therapeutic intervention in this and potentially other polyQ disorders.
Annals of Human Biology | 2011
David Albuquerque; Licínio Manco; Kovana M. Loua; Ana Paula Arez; Maria Jesus Trovoada; Luís Relvas; Tamba S. Millimono; Silvia L. Rath; Dinora Lopes; Fátima Nogueira; Luís Varandas; Manuela Alvarez; M. Letícia Ribeiro
Background: Ferroportin is a transmembrane protein responsible for iron export from enterocytes and macrophages. Mutation c.744G → T (Q248H), located in exon 6 of the ferroportin gene SLC40A1, is found as a polymorphism in populations of African origin. This mutation has been extensively analysed in African-Americans, but poorly studied in native African populations. Aim: To increase information about Q248H mutation frequency in native sub-Saharan populations examining three West African populations. Subjects and methods: Samples from S. Tomé e Príncipe (n = 115), Angola (n = 156) and Republic of Guinea (n = 170) were analysed for Q248H mutation and for two polymorphisms, IVS1( − 24)G → C and microsatellite (CGG)n, using standard molecular methodology. Results: The estimated frequencies of Q248H allele were 2.2% in S. Tomé e Príncipe, 3.5% in Angola and 4.1% in Republic of Guinea. Analysis of polymorphisms IVS1( − 24)G → C and (CGG)n showed mutation allele c.744T to be strongly associated with haplotype IVS1( − 24)G/(CGG)7. Conclusions: This study confirmed the presence of Q248H mutation at polymorphic frequencies in three native sub-Saharan populations. Analysis of two additional markers in the same gene support a single origin of the mutant allele c.744T in the haplotype background IVS1( − 24)G/(CGG)7.
Acta Paediatrica | 2013
David Albuquerque; Clévio Nóbrega; Licínio Manco
The ‐13910C>T single nucleotide polymorphism located upstream of the lactase gene (LCT) was found tightly associated with lactase persistence in European populations. Recently, it was also associated with body mass index (BMI) and obesity in European adults. The aim of this study was to test the association of ‐13910C>T polymorphism with obesity‐related traits and risk of obesity in children.
Annals of Human Genetics | 2014
David Albuquerque; Manuela Núñez Estévez; Pilar Beato Víbora; Plácida Sánchez Giralt; Aránzazu Margallo Balsera; Pedro Gil Cortés; Mercedes Jiménez López; Luis Miguel Luego; Guillermo Gervasini; Sergio Barroso Hernández; Javier Arroyo-Díez; Manuel Arrobas Vacas; Clévio Nóbrega; Licínio Manco; Raquel Rodríguez-López
We screened for mutations in the MC4R and LEPR genes and investigated the genotype‐phenotype correlation in obese individuals belonging to families with evident hereditary patterns of severe and early‐onset obesity among the Iberian population.