Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David B. Graves is active.

Publication


Featured researches published by David B. Graves.


Journal of Physics D | 2012

The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

David B. Graves

Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation‐reduction biology. Oxidation‐reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well. (Some figures may appear in colour only in the online journal)


IEEE Transactions on Plasma Science | 2008

Cold Atmospheric Plasma: Charged Species and Their Interactions With Cells and Tissues

E. Stoffels; Yukinori Sakiyama; David B. Graves

Cold atmospheric plasma (CAP) treatment of living tissues becomes a popular topic in modern plasma physics and in medical sciences. The plasma is capable of bacterial inactivation and noninflammatory tissue modification, which makes it an attractive tool for wound healing and the treatment of skin diseases and dental caries. There are still many open issues with regard to the mechanisms of action of the plasma on bacteria and mammalian cells and tissues, both from the biological and the physical perspective. For example, the chemistry of CAP and the exact roles of various plasma constituents in tissue treatment are not yet fully resolved. In this paper, we shall concentrate on the charged species (electrons and ions) in the plasma. The selected physical properties of typical atmospheric plasma sources will be discussed; experiments will be confronted with theoretical considerations, and several biomedical aspects of CAP treatment will be surveyed.


IEEE Transactions on Plasma Science | 1986

A Continuum Model of DC and RF Discharges

David B. Graves; Klavs F. Jensen

A continuum model of direct current (dc) and 13.56-MHz radio-frequency (RF) discharges in a parallel-plate configuration is presented. The model consists of equations for electron and ion continuity, Poissons equation for the self-consistent electric field, and an equation for electron energy. The equations are solved for a single set of conditions and a comparison is made between the structure of a dc and a 13.56-MHz RF discharge. One of the major structural differences is the emergence, under RF conditions, of large electron conduction currents in the quasi-neutral region. This results in substantially higher electron heating in the quasi-neutral region and a consequent shift in the peak ionization rate from the cathode sheath to the quasineutral region. In addition, the RF solutions suggest that equivalent circuit models and ambipolar diffusion models are promising ways to simplify predictions of discharge physics. The ultimate goal of this work is to provide an adequate description of the discharge physics so that discharge chemistry can be understood. The latter is essential in predicting the behavior of plasma film etching and deposition reactors used extensively in electronics materials processing.


Journal of Physics D | 2011

Long-term antibacterial efficacy of air plasma-activated water

Matthew J. Traylor; Matthew J. Pavlovich; Sharmin Karim; Pritha Hait; Yukinori Sakiyama; Douglas S. Clark; David B. Graves

Indirect air dielectric barrier discharge in close proximity to water creates an acidified, nitrogen-oxide containing solution known as plasma-activated water (PAW), which remains antibacterial for several days. Suspensions of E. coli were exposed to PAW for either 15 min or 3 h over a 7-day period after PAW generation. Both exposure times yielded initial antibacterial activity corresponding to a ~5-log reduction in cell viability, which decreased at differing rates over 7 days to negligible activity and a 2.4-log reduction for 15 min and 3 h exposures, respectively. The solution remained at pH ~2.7 for this period and initially included hydrogen peroxide, nitrate and nitrite anions. The solution composition varied significantly over this time, with hydrogen peroxide and nitrite diminishing within a few days, during which the antibacterial efficacy of 15 min exposures decreased significantly, while that of 3 h exposures produced a 5-log reduction or more. These results highlight the complexity of PAW solutions where multiple chemical components exert varying biological effects on differing time scales.


IEEE Transactions on Plasma Science | 1991

Particle simulations of radio-frequency glow discharges

M. Surendra; David B. Graves

Particle-in-cell (PIC) simulations are used to study the structure of radio-frequency (RF) glow discharges in helium between parallel-plate electrodes. The authors have examined a range of conditions and report on a variety of observed phenomena. Comparisons to experiment and analytical models are made, when possible. The differences between discharges in which secondary electrons play a key role in sustaining the discharge and those in which secondary electrons are unimportant are examined in three cases which illustrate the importance of the discharge-sustaining mechanisms. Electron-energy distributions are found to be, in general, non-Maxwellian, with shapes that depend in complex ways on discharge conditions. In the absence of secondary electron emission, electron heating in the sheath regions of the discharge is enhanced at higher voltages compared to ohmic heating in the bulk of the plasma. Fast electrons accelerated by the advancing sheath can carry a substantial fraction of the conduction current in the bulk of the discharge, reducing the effective bulk ohmic heating of electrons. Ion-energy distributions at electrode surfaces have been predicted and are compared to experimental measurements. >


Journal of Applied Physics | 1992

Sheath structure around particles in low‐pressure discharges

J. E. Daugherty; R. K. Porteous; M. D. Kilgore; David B. Graves

Collisionless orbit theory is used to model isolated particles in low‐pressure discharges with and without the presence of negative ions. The key results are as follows: (1) Debye–Huckel theory works well for approximating the potential profile around the particle, and (2) the size of the sheath around the particle is determined by a Debye length that results from linearizing the Poisson–Vlasov equation. These results are valid as long as the ratio of particle radius to Debye length is small and the ratio of Debye length to mean free path is small.


Journal of Physics D | 2012

Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species

Yukinori Sakiyama; David B. Graves; Hung-Wen Chang; Tetsuji Shimizu; Gregor E. Morfill

We present a numerical model of a surface microdischarge (SMD) in humid air at atmospheric pressure. Our model includes over 50 species and 600 elementary reactions and consists of two, coupled well-mixed regions: a discharge layer with both charged and neutral species and an afterglow region consisting only of neutral species. Multiple time steps employed in our model enable capturing rapid dynamic behaviour in the discharge layer as well as the relatively slow diffusion and reaction in the afterglow. A short duration, high electric field is assumed to be excited at 10 kHz in the discharge region with power density maintained at 0.05 W cm−2. Among the predicted dominant species in the afterglow are O3, N2O5, N2O, HNO3, H2, NO3, H2O2, HNO2 and NO2. The results are in qualitative agreement with Fourier transform infrared absorption spectroscopy. Our simulation results show that density of those reactive species continues to evolve significantly in time, even after ~15 min of SMD exposure. This result suggests that SMD treatments on the order of minutes or less may involve significant neutral species concentration and flux transients, potentially affecting interpretation of results.


Plasma Sources Science and Technology | 2016

Plasma–liquid interactions: a review and roadmap

Pj Peter Bruggeman; Mark J. Kushner; Bruce R. Locke; Jge Gardeniers; W. G. Graham; David B. Graves; Rchm Hofman-Caris; D Marić; Jonathan P. Reid; E Ceriani; D. Fernandez Rivas; John E. Foster; Sc Garrick; Yury Gorbanev; Satoshi Hamaguchi; Felipe Iza; Helena Jablonowski; Juergen F. Kolb; František Krčma; Petr Lukes; Zdenko Machala; I. Marinov; Davide Mariotti; S. Mededovic Thagard; D. Minakata; Erik C. Neyts; J. Pawlat; Z. Lj. Petrović; R. Pflieger; Stephan Reuter

Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas.


Journal of Vacuum Science and Technology | 1998

The recombination of chlorine atoms at surfaces

Gowri P. Kota; J. W. Coburn; David B. Graves

Chlorine atom recombination coefficient (γCl) measurements are reported for a variety of surfaces and at a range of surface temperatures. The surfaces include crystalline silicon, quartz, anodized aluminum, tungsten, stainless steel, polycrystalline silicon, and photoresist. Surface temperatures ranged from about −90 °C up to 85 °C. Measurements were made in a vacuum chamber with chlorine atoms and molecules effusing from an external discharge source as a molecular beam and impacting a selected surface. The incident and reflected beam compositions calculated using a modulated beam mass spectrometer were used to infer the recombination coefficient. At room temperature, the values of γCl ranged from below the detection sensitivity (about 0.01) for crystalline silicon to ∼0.85 for stainless steel. Other surfaces displayed intermediate values between these extremes. For example, γCl for polycrystalline silicon is about 0.2–0.3 at room temperature. All surfaces, except stainless steel, displayed increasing val...


Plasma Chemistry and Plasma Processing | 1996

Role of etch products in polysilicon etching in a high-density chlorine discharge

C. Lee; David B. Graves; M. A. Lieberman

For low-pressure, high-density plasma systems, etch products can play a significant role in affecting plasma parameters such a.s species concentration and electron temperature. The residence time of etch products in the chamber can he long, hence depleting the concentration of the reactants, and leading to a decrease in etch rate. We use a spatially averaged global model including both gas phase and surface chemistry to study Cl2 etching of polvsilicon. Etch products leaving the wafer surface are assioned to he SiCL2 and SiCl4. These species can be fragmented and ionized by collisions with energetic electrons, generating neutral and charged SiCl, products (x=0–4). Two limiting cases of the etch mechanism are found. an ion flux-limited regime and a neutral reactant-limited regime. The high degree of dissociation in high-density plasmas leads to the formation of elemental silicon, which can deposit on the chamber walls and wafer surface. We include surface models for both the wall and the wafer to better understand the role of etch products as a function of flowrate, pressure, and input pwer. A phenomenological model for the surface chemistry is based on available experimental data. We consider the two limiting conditions of nonreactive and reactive walls. These models are perfectly reflective walls, where all silicon-containing species are reflected; and reactive walls, which act as reactive sites for the formation of SiCl2 and SiCl4 etch products. The two limiting conditions give significantly different results. A decrease in the absolute atomic silicon density and a weaker dependence of etch rate on flowrate are observed for the reactive wall.

Collaboration


Dive into the David B. Graves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. W. Coburn

University of California

View shared research outputs
Top Co-Authors

Avatar

D. Nest

University of California

View shared research outputs
Top Co-Authors

Avatar

David Humbird

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge