David B. Horton
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David B. Horton.
Journal of Pharmacology and Experimental Therapeutics | 2011
David B. Horton; Kiran B. Siripurapu; Guangrong Zheng; Peter A. Crooks; Linda P. Dwoskin
Lobelane, a chemically defunctionalized saturated analog of lobeline, has increased selectivity for the vesicular monoamine transporter 2 (VMAT2) compared with the parent compound. Lobelane inhibits methamphetamine-evoked dopamine (DA) release and decreases methamphetamine self-administration. Unfortunately, tolerance develops to the ability of lobelane to decrease these behavioral effects of methamphetamine. Lobelane has low water solubility, which is problematic for drug development. The aim of the current study was to determine the pharmacological effect of replacement of the N-methyl moiety with a chiral N-1,2-dihydroxypropyl (N-1,2-diol) moiety, which enhances water solubility, altering the configuration of the N-1,2-diol moiety and incorporating phenyl ring substituents into the analogs. To determine VMAT2 selectivity, structure-activity relationships also were generated for inhibition of DA and serotonin transporters. Analogs with the highest potency for inhibiting DA uptake at VMAT2 and at least 10-fold selectivity were evaluated further for ability to inhibit methamphetamine-evoked DA release from superfused striatal slices. (R)-3-[2,6-cis-di(4-methoxyphenethyl)piperidin-1-yl]propane-1,2-diol (GZ-793A), the (R)-4-methoxyphenyl-N-1,2-diol analog, and (R)-3-[2,6-cis-di(1-naphthylethyl)piperidin-1-yl]propane-1,2-diol (GZ-794A), the (R)-1-naphthyl-N-1,2-diol analog, exhibited the highest potency (Ki ∼30 nM) inhibiting VMAT2, and both analogs inhibited methamphetamine-evoked endogenous DA release (IC50 = 10.6 and 0.4 μM, respectively). Thus, the pharmacophore for VMAT2 inhibition accommodates the N-1,2-diol moiety, which improves drug-likeness and enhances the potential for the development of these clinical candidates as treatments for methamphetamine abuse.
Neuropharmacology | 2011
Andrew C. Meyer; David B. Horton; Nichole M. Neugebauer; Thomas E. Wooters; Justin R. Nickell; Linda P. Dwoskin; Michael T. Bardo
Tetrabenazine (TBZ), a benzoquinolizine derivative, binds with high affinity to the vesicular monoamine transporter-2 (VMAT2), inhibiting uptake of cytosolic monoamines. The current study aimed to provide preclinical evidence supporting the potential use of TBZ as a treatment for methamphetamine abuse. Effects of TBZ on function of the dopamine transporter (DAT) and serotonin transporter (SERT) in striatal and hippocampal synaptosomes, respectively, and on VMAT2 function in isolated striatal synaptic vesicles were determined. Effect of TBZ (acute, 0.1-3.0 mg/kg, s.c.; repeated, 1.0 mg/kg for 7 days) on locomotor activity in methamphetamine-sensitized rats was assessed. Ability of TBZ (0.1-3.0 mg/kg; s.c.) or vehicle to decrease the discriminative effect of methamphetamine also was determined. Ability of TBZ (acute, 0.1-1.0 mg/kg, s.c.; repeated, 0.1 or 1.0 mg/kg for 7 days) to specifically decrease methamphetamine self-administration was determined; for comparison, a separate group of rats was assessed for effects of TBZ on food-maintained responding. Results show that TBZ was 11-fold more potent inhibiting DAT than SERT, and 2.5-fold more potent inhibiting VMAT2 than DAT. Results from behavioral studies showed that the lowest dose of TBZ transiently increased methamphetamine self-administration, whereas higher TBZ doses decreased methamphetamine self-administration. Also, TBZ at high doses decreased methamphetamine locomotor sensitization and discriminative stimulus effects, as well as food-maintained responding. Thus, despite acting as a potent VMAT2 inhibitor, these preclinical results indicate that TBZ lacks behavioral specificity as an inhibitor of methamphetamine-induced reinforcement, diminishing its viability as a suitable treatment for methamphetamine abuse.
Journal of Pharmacology and Experimental Therapeutics | 2010
Joshua S. Beckmann; Kiran B. Siripurapu; Justin R. Nickell; David B. Horton; Emily D. Denehy; Ashish P. Vartak; Peter A. Crooks; Linda P. Dwoskin; Michael T. Bardo
Both lobeline and lobelane attenuate methamphetamine self-administration in rats by decreasing methamphetamine-induced dopamine release via interaction with vesicular monoamine transporter-2 (VMAT2). A novel derivative of nor-lobelane, cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-110), and its trans-isomers, (2R,5R)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-111) and (2S,5S)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-112), were evaluated for inhibition of [3H]dihydrotetrabenazine binding and [3H]dopamine uptake by using a rat synaptic vesicle preparation to assess VMAT2 interaction. Compounds were evaluated for inhibition of [3H]nicotine and [3H]methyllycaconitine binding to assess interaction with the major nicotinic receptor subtypes. In addition, compounds were evaluated for inhibition of methamphetamine-evoked endogenous dopamine release by using striatal slices. The most promising compound, UKCP-110, was evaluated for its ability to decrease methamphetamine self-administration and methamphetamine discriminative stimulus cues and for its effect on food-maintained operant responding. UKCP-110, UKCP-111, and UKCP-112 inhibited [3H]dihydrotetrabenazine binding (Ki = 2.66 ± 0.37, 1.05 ± 0.10, and 3.80 ± 0.31 μM, respectively) and had high potency inhibiting [3H]dopamine uptake (Ki = 0.028 ± 0.001, 0.046 ± 0.008, 0.043 ± 0.004 μM, respectively), but lacked affinity at nicotinic receptors. Although the trans-isomers did not alter methamphetamine-evoked dopamine release, UKCP-110 inhibited (IC50 = 1.8 ± 0.2 μM; Imax = 67.18 ± 6.11 μM) methamphetamine-evoked dopamine release. At high concentrations, UKCP-110 also increased extracellular dihydroxyphenylacetic acid. It is noteworthy that UKCP-110 decreased the number of methamphetamine self-infusions, while having no effect on food-reinforced behavior or the methamphetamine stimulus cue. Thus, UKCP-110 represents a new lead in the development of novel pharmacotherapies for the treatment of methamphetamine abuse.
Journal of Pharmacology and Experimental Therapeutics | 2011
David B. Horton; Kiran B. Siripurapu; Seth D. Norrholm; John P. Culver; Marhaba Hojahmat; Joshua S. Beckmann; Steven B. Harrod; Agripina G. Deaciuc; Michael T. Bardo; Peter A. Crooks; Linda P. Dwoskin
Lobeline, a nicotinic receptor antagonist and neurotransmitter transporter inhibitor, is a candidate pharmacotherapy for methamphetamine abuse. meso-Transdiene (MTD), a lobeline analog, lacks nicotinic receptor affinity, retains affinity for vesicular monoamine transporter 2 (VMAT2), and, surprisingly, has enhanced affinity for dopamine (DA) and serotonin transporters [DA transporter (DAT) and serotonin transporter (SERT), respectively]. In the current study, MTD was evaluated for its ability to decrease methamphetamine self-administration in rats relative to food-maintained responding. MTD specifically decreased methamphetamine self-administration, extending our previous work. Classical structure-activity relationships revealed that more conformationally restricted MTD analogs enhanced VMAT2 selectivity and drug likeness, whereas affinity at the dihydrotetrabenazine binding and DA uptake sites on VMAT2 was not altered. Generally, MTD analogs exhibited 50- to 1000-fold lower affinity for DAT and were equipotent or had 10-fold higher affinity for SERT, compared with MTD. Representative analogs from the series potently and competitively inhibited [3H]DA uptake at VMAT2. (3Z,5Z)-3,5-bis(2,4-dichlorobenzylidene)-1-methylpiperidine (UKMH-106), the 3Z,5Z-2,4-dichlorophenyl MTD analog, had improved selectivity for VMAT2 over DAT and importantly inhibited methamphetamine-evoked DA release from striatal slices. In contrast, (3Z,5E)-3,5-bis(2,4-dichlorobenzylidene)-1-methylpiperidine (UKMH-105), the 3Z,5E-geometrical isomer, inhibited DA uptake at VMAT2, but did not inhibit methamphetamine-evoked DA release. Taken together, these results suggest that these geometrical isomers interact at alternate sites on VMAT2, which are associated with distinct pharmacophores. Thus, structural modification of the MTD molecule resulted in analogs exhibiting improved drug likeness and improved selectivity for VMAT2, as well as the ability to decrease methamphetamine-evoked DA release, supporting the further evaluation of these analogs as treatments for methamphetamine abuse.
Current Topics in Medicinal Chemistry | 2011
Peter A. Crooks; Guangrong Zheng; Ashish P. Vartak; John P. Culver; Fang Zheng; David B. Horton; Linda P. Dwoskin
The vesicular monoamine transporter-2 (VMAT2) is considered as a new target for the development of novel therapeutics to treat psychostimulant abuse. Current information on the structure, function and role of VMAT2 in psychostimulant abuse are presented. Lobeline, the major alkaloidal constituent of Lobelia inflata, interacts with nicotinic receptors and with VMAT2. Numerous studies have shown that lobeline inhibits both the neurochemical and behavioral effects of amphetamine in rodents, and behavioral studies demonstrate that lobeline has potential as a pharmacotherapy for psychostimulant abuse. Systematic structural modification of the lobeline molecule is described with the aim of improving selectivity and affinity for VMAT2 over neuronal nicotinic acetylcholine receptors and other neurotransmitter transporters. This has led to the discovery of more potent and selective ligands for VMAT2. In addition, a computational neural network analysis of the affinity of these lobeline analogs for VMAT2 has been carried out, which provides computational models that have predictive value in the rational design of VMAT2 ligands and is also useful in identifying drug candidates from virtual libraries for subsequent synthesis and evaluation.
Neuropharmacology | 2007
Seth D. Norrholm; David B. Horton; Linda P. Dwoskin
Evidence indicates that monoaminergic neurotransmitter transporters are promiscuous, transporting substrates other than their cognate neurotransmitters. For example, serotonin is transported by the dopamine transporter (DAT) under conditions in which serotonin transporter (SERT) activity is eliminated (e.g., pharmacological inhibition). We performed a kinetic analysis of [(3)H]serotonin uptake in rat striatal synaptosomes (expressing DAT and SERT) and hippocampal synaptosomes (expressing SERT, but not DAT). Nonspecific [(3)H]serotonin uptake was defined as the amount of uptake remaining in the presence of fluoxetine (10microM) or paroxetine (0.05microM). In hippocampal synaptosomes, K(m) and V(max) values for [(3)H]serotonin uptake did not differ whether fluoxetine or paroxetine was used to define nonspecific uptake. However, in striatal synaptosomes, both K(m) and V(max) values for [(3)H]serotonin uptake were greater when fluoxetine, rather than paroxetine, was used to define nonspecific uptake. These data suggest that, at the concentrations employed, fluoxetine inhibits serotonin uptake at both DAT and SERT, whereas paroxetine only inhibits serotonin uptake at SERT. Thus, when DAT is inhibited by GBR 12909, kinetic parameters for serotonin uptake via SERT in striatum are not different from those obtained in hippocampus. These findings have important implications regarding the analysis of monoaminergic reuptake in brain regions exhibiting heterogeneous transporter expression.
Biochemical Pharmacology | 2013
Vidya Narayanaswami; Sucharita S. Somkuwar; David B. Horton; Lisa A. Cassis; Linda P. Dwoskin
Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of nicotine on dopamine and norepinephrine release in brain regions involved in nicotine reward and hypertension.
Journal of Neurochemistry | 2013
David B. Horton; Justin R. Nickell; Guangrong Zheng; Peter A. Crooks; Linda P. Dwoskin
(R)‐3‐[2,6‐cis‐Di(4‐methoxyphenethyl)piperidin‐1‐yl]propane‐1,2‐diol (GZ‐793A) inhibits methamphetamine‐evoked dopamine release from striatal slices and methamphetamine self‐administration in rats. GZ‐793A potently and selectively inhibits dopamine uptake at the vesicular monoamine transporter‐2 (VMAT2). This study determined GZ‐793As ability to evoke [3H]dopamine release and inhibit methamphetamine‐evoked [3H]dopamine release from isolated striatal synaptic vesicles. Results show GZ‐793A concentration‐dependent [3H]dopamine release; nonlinear regression revealed a two‐site model of interaction with VMAT2 (High‐ and Low‐EC50 = 15.5 nM and 29.3 μM, respectively). Tetrabenazine and reserpine completely inhibited GZ‐793A‐evoked [3H]dopamine release, however, only at the High‐affinity site. Low concentrations of GZ‐793A that interact with the extravesicular dopamine uptake site and the High‐affinity intravesicular DA release site also inhibited methamphetamine‐evoked [3H]dopamine release from synaptic vesicles. A rightward shift in the methamphetamine concentration‐response was evident with increasing concentrations of GZ‐793A, and the Schild regression slope was 0.49 ± 0.08, consistent with surmountable allosteric inhibition. These results support a hypothetical model of GZ‐793A interaction at more than one site on the VMAT2 protein, which explains its potent inhibition of dopamine uptake, dopamine release via a High‐affinity tetrabenazine‐ and reserpine‐sensitive site, dopamine release via a Low‐affinity tetrabenazine‐ and reserpine‐insensitive site, and a low‐affinity interaction with the dihydrotetrabenazine binding site on VMAT2. GZ‐793A inhibition of the effects of methamphetamine supports its potential as a therapeutic agent for the treatment of methamphetamine abuse.
Bioorganic & Medicinal Chemistry | 2010
Marhaba Hojahmat; David B. Horton; Seth D. Norrholm; Dennis K. Miller; Vladimir P. Grinevich; Agripina G. Deaciuc; Linda P. Dwoskin; Peter A. Crooks
Vesicular monoamine transporter-2 (VMAT2) is a viable target for development of pharmacotherapies for psychostimulant abuse. Lobeline (1) is a potent antagonist at alpha4beta2 * nicotinic acetylcholine receptors, has moderate affinity (K(i)=5.46microM) for VMAT2, and is being investigated currently as a clinical candidate for treatment of psychostimulant abuse. A series of carboxylic acid and sulfonic acid ester analogs 2-20 of lobeline were synthesized and evaluated for interaction with alpha4beta2 * and alpha7 * neuronal nicotinic acetylcholine receptors (nAChRs), the dopamine transporter (DAT), serotonin transporter (SERT) and VMAT2. Both carboxylic acid and sulfonic acid esters had low affinity at alpha7 * nAChRs. Similar to lobeline (K(i)=4nM), sulfonic acid esters had high affinity at alpha4beta2 * (K(i)=5-17nM). Aromatic carboxylic acid ester analogs of lobeline (2-4) were 100-1000-fold less potent than lobeline at alpha4beta2 * nAChRs, whereas aliphatic carboxylic acid ester analogs were 10-100-fold less potent than lobeline at alpha4beta2 *. Two representative lobeline esters, the 10-O-benzoate (2) and the 10-O-benzenesulfonate (10) were evaluated in the (36)Rb(+) efflux assay using rat thalamic synaptosomes, and were shown to be antagonists with IC(50) values of 0.85microM and 1.60microM, respectively. Both carboxylic and sulfonic acid esters exhibited a range of potencies (equipotent to 13-45-fold greater potency compared to lobeline) for inhibiting DAT and SERT, respectively, and like lobeline, had moderate affinity (K(i)=1.98-10.8microM) for VMAT2. One of the more interesting analogs, p-methoxybenzoic acid ester 4, had low affinity at alpha4beta2 * nAChRs (K(i)=19.3microM) and was equipotent with lobeline, at VMAT2 (K(i)=2.98microM), exhibiting a 6.5-fold selectivity for VMAT2 over alpha4beta2 nAChRs. Thus, esterification of the lobeline molecule may be a useful structural modification for the development of lobeline analogs with improved selectivity at VMAT2.
European Journal of Pharmacology | 2017
Justin R. Nickell; Kiran B. Siripurapu; David B. Horton; Guangrong Zheng; Peter A. Crooks; Linda P. Dwoskin
ABSTRACT Lobeline and lobelane inhibit the behavioral and neurochemical effects of methamphetamine via an interaction with the vesicular monoamine transporter‐2 (VMAT2). However, lobeline has high affinity for nicotinic receptors, and tolerance develops to the behavioral effects of lobelane. A water‐soluble analog of lobelane, R‐N‐(1,2–dihydroxypropyl)−2,6‐cis‐di‐(4‐methoxyphenethyl)piperidine hydrochloride (GZ‐793A), also interacts selectively with VMAT2 to inhibit the effects of methamphetamine, but does not produce behavioral tolerance. The current study further evaluated the mechanism underlying the GZ‐793A‐mediated inhibition of the neurochemical effects of methamphetamine. In contrast to lobeline, GZ‐793A does not interact with the agonist recognition site on &agr;4&bgr;2* and &agr;7* nicotinic receptors. GZ‐793A (0.3–100 &mgr;M) inhibited methamphetamine (5 &mgr;M)‐evoked fractional dopamine release from rat striatal slices, and did not evoke dopamine release in the absence of methamphetamine. Furthermore, GZ‐793A (1–100 &mgr;M) inhibited neither nicotine (30 &mgr;M)‐evoked nor electrical field‐stimulation‐evoked (100 Hz/1 min) fractional dopamine release. Unfortunately, GZ‐793A inhibited [3H]dofetilide binding to human‐ether‐a‐go‐go related gene channels expressed on human embryonic kidney cells, and further, prolonged action potentials in rabbit cardiac Purkinje fibers, suggesting the potential for GZ‐793A to induce ventricular arrhythmias. Thus, GZ‐793A selectively inhibits the neurochemical effects of methamphetamine and lacks nicotinic receptor interactions; however, development as a pharmacotherapy for methamphetamine use disorders will not be pursued due to its potential cardiac liabilities.