Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David B. Jacoby is active.

Publication


Featured researches published by David B. Jacoby.


PLOS Biology | 2010

Human Mucosal Associated Invariant T Cells Detect Bacterially Infected Cells

Marielle C. Gold; Stefania Cerri; Susan Smyk-Pearson; Meghan E. Cansler; Todd M. Vogt; Jacob Delepine; Ervina Winata; Gwendolyn Swarbrick; Wei Jen Chua; Yik Y. L. Yu; Olivier Lantz; Matthew S. Cook; Megan Null; David B. Jacoby; Melanie J. Harriff; Deborah A. Lewinsohn; Ted H. Hansen; David M. Lewinsohn

A first indication of the biological role of mucosal associated invariant T (MAIT) cells reveals that this discrete T cell subset is broadly reactive to bacterial infection. In particular MAIT cells recognize Mycobacterium tuberculosis-infected lung airway epithelial cells via the most evolutionarily conserved major histocompatibility molecule.


Stem Cells | 2008

Characterization of Side Population Cells from Human Airway Epithelium

TillieLouise Hackett; Furquan Shaheen; Andrew Johnson; Samuel Wadsworth; Dmitri V. Pechkovsky; David B. Jacoby; Anthony Kicic; Stephen M. Stick; Darryl A. Knight

The airway epithelium is the first line of contact with the inhaled external environment and is continuously exposed to and injured by pollutants, allergens, and viruses. However, little is known about epithelial repair and in particular the identity and role of tissue resident stem/progenitor cells that may contribute to epithelial regeneration. The aims of the present study were to identify, isolate, and characterize side population (SP) cells in human tracheobronchial epithelium. Epithelial cells were obtained from seven nontransplantable healthy lungs and four asthmatic lungs by pronase digestion. SP cells were identified by verapamil‐sensitive efflux of the DNA‐binding dye Hoechst 33342. Using flow cytometry, CD45− SP, CD45+ SP, and non‐SP cells were isolated and sorted. CD45− SP cells made up 0.12% ± 0.01% of the total epithelial cell population in normal airway but 4.1% ± 0.06% of the epithelium in asthmatic airways. All CD45− SP cells showed positive staining for epithelial‐specific markers cytokeratin‐5, E‐cadherin, ZO‐1, and p63. CD45− SP cells exhibited stable telomere length and increased colony‐forming and proliferative potential, undergoing population expansion for at least 16 consecutive passages. In contrast with non‐SP cells, fewer than 100 CD45− SP cells were able to generate a multilayered and differentiated epithelium in air‐liquid interface culture. SP cells are present in human tracheobronchial epithelium, exhibit both short‐ and long‐term proliferative potential, and are capable of generation of differentiated epithelium in vitro. The number of SP cells is significantly greater in asthmatic airways, providing evidence of dysregulated resident SP cells in the asthmatic epithelium.


Journal of Clinical Investigation | 2005

Neuronal eotaxin and the effects of ccr3 antagonist on airway hyperreactivity and M2 receptor dysfunction

A.D. Fryer; Louis H. Stein; Zhenying Nie; Damian E. Curtis; Christopher M. Evans; Simon Teanby Hodgson; Peter J. Jose; Kristen E. Belmonte; Erin Fitch; David B. Jacoby

Eosinophils cluster around airway nerves in patients with fatal asthma and in antigen-challenged animals. Activated eosinophils release major basic protein, which blocks inhibitory M2 muscarinic receptors (M2Rs) on nerves, increasing acetylcholine release and potentiating vagally mediated bronchoconstriction. We tested whether GW701897B, an antagonist of CCR3 (the receptor for eotaxin as well as a group of eosinophil active chemokines), affected vagal reactivity and M2R function in ovalbumin-challenged guinea pigs. Sensitized animals were treated with the CCR3 antagonist before inhaling ovalbumin. Antigen-challenged animals were hyperresponsive to vagal stimulation, but those that received the CCR3 antagonist were not. M2R function was lost in antigen-challenged animals, but not in those that received the CCR3 antagonist. Although the CCR3 antagonist did not decrease the number of eosinophils in lung tissues as assessed histologically, CCR3 antagonist prevented antigen-induced clustering of eosinophils along the nerves. Immunostaining revealed eotaxin in airway nerves and in cultured airway parasympathetic neurons from both guinea pigs and humans. Both IL-4 and IL-13 increased expression of eotaxin in cultured airway parasympathetic neurons as well as in human neuroblastoma cells. Thus, signaling via CCR3 mediates eosinophil recruitment to airway nerves and may be a prerequisite to blockade of inhibitory M2Rs by eosinophil major basic protein.


PLOS ONE | 2011

Eosinophils Increase Neuron Branching in Human and Murine Skin and In Vitro

Erin Foster; Eric L. Simpson; Lorna J. Fredrikson; James J. Lee; Nancy A. Lee; A.D. Fryer; David B. Jacoby

Cutaneous nerves are increased in atopic dermatitis, and itch is a prominent symptom. We studied the functional interactions between eosinophils and nerves in human and mouse skin and in culture. We demonstrated that human atopic dermatitis skin has eosinophil granule proteins present in the same region as increased nerves. Transgenic mice in which interleukin-5 (IL-5) expression is driven by a keratin-14 (K14) promoter had many eosinophils in the epidermis, and the number of nerves was also significantly increased in the epidermis. In co-cultures, eosinophils dramatically increased branching of sensory neurons isolated from the dorsal root ganglia (DRG) of mice. This effect did not occur in DRG neurons co-cultured with mast cells or with dead eosinophils. Physical contact of the eosinophils with the neurons was not required, and the effect was not blocked by an antibody to nerve growth factor. DRG neurons express eotaxin-1, ICAM-1 and VCAM-1, which may be important in the recruitment, binding, and activation of eosinophils in the region of cutaneous nerves. These data indicate a pathophysiological role for eosinophils in cutaneous nerve growth in atopic dermatitis, and suggest they may present a therapeutic target in atopic dermatitis and other eosinophilic skin conditions with neuronal symptoms such as itch.


British Journal of Pharmacology | 2012

Non-bronchodilating mechanisms of tiotropium prevent airway hyperreactivity in a guinea-pig model of allergic asthma

Kalmia S. Buels; David B. Jacoby; A.D. Fryer

BACKGROUND AND PURPOSE Asthma is characterized by reversible bronchoconstriction and airway hyperreactivity. Although M3 muscarinic receptors mediate bronchoconstriction, non‐selective muscarinic receptor antagonists are not currently recommended for chronic control of asthma. We tested whether selective blockade of M3 receptors, at the time of antigen challenge, blocks subsequent development of airway hyperreactivity in antigen‐challenged guinea‐pigs.


The Journal of Allergy and Clinical Immunology | 2011

Toll-like receptor 7 agonists are potent and rapid bronchodilators in guinea pigs.

Elad H. Kaufman; A.D. Fryer; David B. Jacoby

BACKGROUND Respiratory tract viral infections result in asthma exacerbations. Toll-like receptor (TLR) 7 is a receptor for viral single-stranded RNA and is expressed at high levels in the lungs. OBJECTIVE Because TLR7 polymorphisms are associated with asthma, we examined the effects of TLR7 agonists in guinea pig airways. METHODS We induced bronchoconstriction in guinea pigs in vivo by means of electrical stimulation of the vagus nerve or intravenous administration of acetylcholine and measured the effect of a TLR7 agonist administered intravenously. We induced contraction of airway smooth muscle in segments of isolated guinea pig tracheas in vitro and measured the effect of TLR7 agonists, antagonists, and pharmacologic inhibitors of associated signaling pathways administered directly to the bath. RESULTS TLR7 agonists acutely inhibited bronchoconstriction in vivo and relaxed contraction of airway smooth muscle in vitro within minutes of administration. Airway relaxation induced by the TLR7 agonist R837 (imiquimod) was partially blocked with a TLR7 antagonist and was also blocked by inhibitors of large-conductance, calcium-activated potassium channels; prostaglandin synthesis; and nitric oxide generation. Another TLR7 agonist, 21-mer single-stranded phosphorothioated polyuridylic acid (PolyUs), mediated relaxation that was completely blocked by a TLR7 antagonist. CONCLUSIONS These data demonstrate a novel protective mechanism to limit bronchoconstriction and maintain airflow during respiratory tract viral infections. The fast time frame is inconsistent with canonical TLR7 signaling. R837 mediates bronchodilation by means of TLR7-dependent and TLR7-independent mechanisms, whereas PolyUs does so through only the TLR7-dependent mechanism. TLR7-independent mechanisms involve prostaglandins and large-conductance, calcium-activated potassium channels, whereas TLR7-dependent mechanisms involve nitric oxide. TLR7 is an attractive therapeutic target for its ability to reverse bronchoconstriction within minutes.


British Journal of Pharmacology | 2009

Etanercept prevents airway hyperresponsiveness by protecting neuronal M2 muscarinic receptors in antigen-challenged guinea pigs

Zhenying Nie; David B. Jacoby; A.D. Fryer

Background and purpose:  Increased tumour necrosis factor‐α (TNF‐α) is associated with airway hyperreactivity in antigen‐challenged animals. In human asthmatics, TNF‐α is increased and blocking it prevents airway hyperreactivity in some asthmatic patients. However, the mechanisms by which TNF‐α mediates hyperreactivity are unknown. Airway hyperreactivity can be caused by dysfunction of neuronal M2 muscarinic receptors that normally limit acetylcholine release from parasympathetic nerves. Here we test whether blocking TNF‐α receptors with etanercept prevents M2 receptor dysfunction and airway hyperreactivity in antigen‐challenged guinea pigs.


Environmental Health Perspectives | 2008

Antigen sensitization influences organophosphorus pesticide-induced airway hyperreactivity

Becky J. Proskocil; Donald A. Bruun; Jesse K. Lorton; Kirsten C. Blensly; David B. Jacoby; Pamela J. Lein; A.D. Fryer

Background Recent epidemiologic studies have identified organophosphorus pesticides (OPs) as environmental factors potentially contributing to the increase in asthma prevalence over the last 25 years. In support of this hypothesis, we have demonstrated that environmentally relevant concentrations of OPs induce airway hyperreactivity in guinea pigs. Objectives Sensitization to allergen is a significant contributing factor in asthma, and we have shown that sensitization changes virus-induced airway hyperreactivity from an eosinophil-independent mechanism to one mediated by eosinophils. Here, we determine whether sensitization similarly influences OP-induced airway hyperreactivity. Methods Nonsensitized and ovalbumin-sensitized guinea pigs were injected subcutaneously with the OP parathion (0.001–1.0 mg/kg). Twenty-four hours later, animals were anesthetized and ventilated, and bronchoconstriction was measured in response to either vagal stimulation or intravenous acetylcholine. Inflammatory cells and acetylcholinesterase activity were assessed in tissues collected immediately after physiologic measurements. Results Ovalbumin sensitization decreased the threshold dose for parathion-induced airway hyperreactivity and exacerbated parathion effects on vagally induced bronchoconstriction. Pretreatment with antibody to interleukin (IL)-5 prevented parathion-induced hyperreactivity in sensitized but not in nonsensitized guinea pigs. Parathion did not increase the number of eosinophils in airways or the number of eosinophils associated with airway nerves nor did it alter eosinophil activation as assessed by major basic protein deposition. Conclusions Antigen sensitization increases vulnerability to parathion-induced airway hyperreactivity and changes the mechanism to one that is dependent on IL-5. Because sensitization to allergens is characteristic of 50% of the general population and 80% of asthmatics (including children), these findings have significant implications for OP risk assessment, intervention, and treatment strategies.


American Journal of Respiratory and Critical Care Medicine | 2013

Toll-like Receptor 7 Rapidly Relaxes Human Airways

Matthew G. Drake; Gregory D. Scott; Becky J. Proskocil; A.D. Fryer; David B. Jacoby; Elad H. Kaufman

RATIONALE Toll-like receptors (TLRs) 7 and 8 detect respiratory virus single-stranded RNA and trigger an innate immune response. We recently described rapid TLR7-mediated bronchodilation in guinea pigs. OBJECTIVES To characterize TLR7 expression and TLR7-induced airway relaxation in humans and in eosinophilic airway inflammation in guinea pigs. To evaluate the relaxant effects of other TLRs. METHODS Human airway smooth muscle strips were contracted with methacholine in vitro, and responses to TLR7 and TLR8 agonists were assessed. TLR7-mediated nitric oxide production was measured using a fluorescent indicator, and TLR7 expression was characterized using immunofluorescence. TLR7 signaling was also evaluated in ovalbumin-challenged guinea pigs. MEASUREMENTS AND MAIN RESULTS The TLR7 agonist imiquimod (R837) caused rapid dose-dependent relaxation of methacholine-contracted human airways in vitro. This was blocked by the TLR7 antagonist IRS661 and by inhibiting nitric oxide production but not by inhibiting prostaglandin production. TLR7 activation markedly increased fluorescence of a nitric oxide detector. TLR7 was expressed on airway nerves, but not airway smooth muscle, implicating airway nerves as the source of TLR7-induced nitric oxide production. TLR7-mediated relaxation persisted in inflamed guinea pigs airways in vivo. The TLR8 agonists polyuridylic acid and polyadenylic acid also relaxed human airways, and this was not blocked by the TLR7 antagonist or by blocking nitric oxide or prostaglandin production. No other TLRs relaxed the airways. CONCLUSIONS TLR7 is expressed on airway nerves and mediates relaxation of human and animal airways through nitric oxide production. TLR7-mediated bronchodilation may be a new therapeutic strategy in asthma.


American Journal of Respiratory Cell and Molecular Biology | 2008

IL-1 Receptors Mediate Persistent, but Not Acute, Airway Hyperreactivity to Ozone in Guinea Pigs

Kirsten C. Verhein; David B. Jacoby; A.D. Fryer

Ozone exposure in the lab and environment causes airway hyperreactivity lasting at least 3 days in humans and animals. In guinea pigs 1 day after ozone exposure, airway hyperreactivity is mediated by eosinophils that block neuronal M(2) muscarinic receptor function, thus increasing acetylcholine release from airway parasympathetic nerves. However, mechanisms of ozone-induced airway hyperreactivity change over time, so that depleting eosinophils 3 days after ozone makes airway hyperreactivity worse rather than better. Ozone exposure increases IL-1beta in bone marrow, which may contribute to acute and chronic airway hyperreactivity. To test whether IL-1beta mediates ozone-induced airway hyperreactivity 1 and 3 days after ozone exposure, guinea pigs were pretreated with an IL-1 receptor antagonist (anakinra, 30 mg/kg, intraperitoneally) 30 minutes before exposure to filtered air or to ozone (2 ppm, 4 h). One or three days after exposure, airway reactivity was measured in anesthetized guinea pigs. The IL-1 receptor antagonist prevented ozone-induced airway hyperreactivity 3 days, but not 1 day, after ozone exposure. Ozone-induced airway hyperreactivity was vagally mediated, since bronchoconstriction induced by intravenous acetylcholine was not changed by ozone. The IL-1 receptor antagonist selectively prevented ozone-induced reduction of eosinophils around nerves and prevented ozone-induced deposition of extracellular eosinophil major basic protein in airways. These data demonstrate that IL-1 mediates ozone-induced airway hyperreactivity at 3 days, but not 1 day, after ozone exposure. Furthermore, preventing hyperreactivity was accompanied by decreased eosinophil major basic protein deposition within the lung, suggesting that IL-1 affects eosinophil activation 3 days after ozone exposure.

Collaboration


Dive into the David B. Jacoby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela J. Lein

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James J. Lee

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge