Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David B. Turner is active.

Publication


Featured researches published by David B. Turner.


Aaps Journal | 2009

Population-based mechanistic prediction of oral drug absorption.

Masoud Jamei; David B. Turner; Jiansong Yang; Sibylle Neuhoff; Sebastian Polak; Amin Rostami-Hodjegan; Geoffrey T. Tucker

The bioavailability of drugs from oral formulations is influenced by many physiological factors including gastrointestinal fluid composition, pH and dynamics, transit and motility, and metabolism and transport, each of which may vary with age, gender, race, food, and disease. Therefore, oral bioavailability, particularly of poorly soluble and/or poorly permeable compounds and those that are extensively metabolized, often exhibits a high degree of inter- and intra-individual variability. While several models and algorithms have been developed to predict bioavailability in an average person, efforts to accommodate intrinsic variability in the component processes are less common. An approach that incorporates such variability for human populations within a mechanistic framework is described together with examples of its application to drug and formulation development.


European Journal of Pharmaceutical Sciences | 2014

Gastrointestinal transfer: in vivo evaluation and implementation in in vitro and in silico predictive tools

Bart Hens; Joachim Brouwers; Bart Anneveld; Maura Corsetti; Mira Symillides; Maria Vertzoni; Christos Reppas; David B. Turner; Patrick Augustijns

INTRODUCTION The purpose of this study was to explore the transfer of drug solutions from stomach to small intestine and its impact on intraluminal drug concentrations in humans. The collected intraluminal data were used as reference to evaluate simulations of gastrointestinal transfer currently implemented in different in vitro and in silico absorption models. METHODS Gastric and duodenal concentrations of the highly soluble and non-absorbable compound paromomycin were determined following oral administration to 5 healthy volunteers under the following conditions: fasted state, fed state and fed state in the presence of a transit-stimulating (domperidone) or transit-inhibiting (loperamide) agent. Based on the obtained intraluminal concentration-time profiles, gastrointestinal transfer (expressed as the half-life of gastric emptying) was analyzed using physiologically-based parameter estimation in Simcyp®. Subsequently, the observed transfer profiles were used to judge the implementation of gastrointestinal transfer in 2 in vitro simulation tools (the TNO Intestinal Model TIM-1 and a three-compartmental in vitro model) and the Simcyp® population-based PBPK modeling platform. RESULTS The observed duodenal concentration-time profile of paromomycin under fasting conditions, with a high average Cmax obtained after 15 min, clearly indicated a fast transfer of drug solutions from stomach to duodenum (estimated gastric half-life between 4 and 13 min). The three-compartmental in vitro model adequately reflected the in vivo fasted state gastrointestinal transfer of paromomycin. For both TIM-1 and Simcyp®, modifications in gastric emptying and dilutions were required to improve the simulation of the transfer of drug solutions. As expected, transfer from stomach to duodenum was delayed in the fed state, resulting in lower duodenal paromomycin concentrations and an estimated gastric half-life between 21 and 40 min. Administration of domperidone or loperamide as transit-stimulating and transit-inhibiting agent, respectively, did not affect the fed state gastric half-life of emptying. CONCLUSION For the first time, the impact of gastrointestinal transfer of solutions on intraluminal drug concentrations was directly assessed in humans. In vitro and in silico simulation tools have been validated and optimized using the in vivo data as reference.


Journal of Pharmaceutical Sciences | 2013

Application of permeability-limited physiologically-based pharmacokinetic models: part II - prediction of P-glycoprotein mediated drug-drug interactions with digoxin.

Sibylle Neuhoff; Karen Rowland Yeo; Zoe Barter; Masoud Jamei; David B. Turner; Amin Rostami-Hodjegan

Digoxin is the recommended substrate for assessment of P-glycoprotein (P-gp)-mediated drug-drug interactions (DDIs) in vivo. The overall aim of our study was to investigate the inhibitory potential of both verapamil and norverapamil on the P-gp-mediated efflux of digoxin in both gut and liver. Therefore, a physiologically-based pharmacokinetic (PBPK) model for verapamil and its primary metabolite was developed and validated through the recovery of observed clinical plasma concentration data for both moieties and the reported interaction with midazolam, albeit a cytochrome P450 3A4-mediated DDI. The validated inhibitor model was then used in conjunction with the model developed previously for digoxin. The range of values obtained for the 10 trials indicated that increases in area under the plasma concentration-time curve (AUC) profiles and maximum plasma concentration observed (Cmax ) values of digoxin following administration of verapamil were more comparable with in vivo observations, when P-gp inhibition by the metabolite, norverapamil, was considered as well. The predicted decrease in AUC and Cmax values of digoxin following administration of rifampicin because of P-gp induction was 1.57- (range: 1.42-1.77) and 1.62-fold (range: 1.53-1.70), which were reasonably consistent with observed values of 1.4- and 2.2-fold, respectively. This study demonstrates the application of permeability-limited models of absorption and distribution within a PBPK framework together with relevant in vitro data on transporters to assess the clinical impact of modulated P-gp-mediated efflux by drugs in development.


European Journal of Pharmaceutical Sciences | 2014

Quantitative prediction of formulation-specific food effects and their population variability from in vitro data with the physiologically-based ADAM model: A case study using the BCS/BDDCS Class II drug nifedipine

Nikunjkumar Patel; Sebastian Polak; Masoud Jamei; Amin Rostami-Hodjegan; David B. Turner

Quantitative prediction of food effects (FE) upon drug pharmacokinetics, including population variability, in advance of human trials may help with trial design by optimising the number of subjects and sampling times when a clinical study is warranted or by negating the need for conduct of clinical studies. Classification and rule-based systems such as the BCS and BDDCS and statistical QSARs are widely used to anticipate the nature of FE in early drug development. However, their qualitative rather than quantitative nature makes them less appropriate for assessing the magnitude of FE. Moreover, these approaches are based upon drug properties alone and are not appropriate for estimating potential formulation-specific FE on modified or controlled release products. In contrast, physiologically-based mechanistic models can consider the scope and interplay of a range of physiological changes after food intake and, in combination with appropriate in vitro drug- and formulation-specific data, can make quantitative predictions of formulation-specific FE including the inter-individual variability of such effects. Herein the Advanced Dissolution, Absorption and Metabolism (ADAM) model is applied to the prediction of formulation-specific FE for BCS/BDDCS Class II drug and CYP3A4 substrate nifedipine using as far as possible only in vitro data. Predicted plasma concentration profiles of all three studied formulations under fasted and fed states are within 2-fold of clinically observed profiles. The % prediction error (%PE) in fed-to-fasted ratio of Cmax and AUC were less than 5% for all formulations except for the Cmax of Nifedicron (%PE=-29.6%). This successful case study should help to improve confidence in the use of mechanistic physiologically-based models coupled with in vitro data for the anticipation of FE in advance of in vivo studies. However, it is acknowledged that further studies with drugs/formulations exhibiting a wide range of properties are required to further validate this methodology.


Molecular Pharmaceutics | 2017

In Silico Modeling Approach for the Evaluation of Gastrointestinal Dissolution, Supersaturation, and Precipitation of Posaconazole

Bart Hens; Shriram M. Pathak; Amitava Mitra; Nikunjkumar Patel; Bo Liu; Sanjaykumar Patel; Masoud Jamei; Joachim Brouwers; Patrick Augustijns; David B. Turner

The aim of this study was to evaluate gastrointestinal (GI) dissolution, supersaturation, and precipitation of posaconazole, formulated as an acidified (pH 1.6) and neutral (pH 7.1) suspension. A physiologically based pharmacokinetic (PBPK) modeling and simulation tool was applied to simulate GI and systemic concentration-time profiles of posaconazole, which were directly compared with intraluminal and systemic data measured in humans. The Advanced Dissolution Absorption and Metabolism (ADAM) model of the Simcyp Simulator correctly simulated incomplete gastric dissolution and saturated duodenal concentrations of posaconazole in the duodenal fluids following administration of the neutral suspension. In contrast, gastric dissolution was approximately 2-fold higher after administration of the acidified suspension, which resulted in supersaturated concentrations of posaconazole upon transfer to the upper small intestine. The precipitation kinetics of posaconazole were described by two precipitation rate constants, extracted by semimechanistic modeling of a two-stage medium change in vitro dissolution test. The 2-fold difference in exposure in the duodenal compartment for the two formulations corresponded with a 2-fold difference in systemic exposure. This study demonstrated for the first time predictive in silico simulations of GI dissolution, supersaturation, and precipitation for a weakly basic compound in part informed by modeling of in vitro dissolution experiments and validated via clinical measurements in both GI fluids and plasma. Sensitivity analysis with the PBPK model indicated that the critical supersaturation ratio (CSR) and second precipitation rate constant (sPRC) are important parameters of the model. Due to the limitations of the two-stage medium change experiment the CSR was extracted directly from the clinical data. However, in vitro experiments with the BioGIT transfer system performed after completion of the in silico modeling provided an almost identical CSR to the clinical study value; this had no significant impact on the PBPK model predictions.


Aaps Journal | 2017

Incorporation of the Time-Varying Postprandial Increase in Splanchnic Blood Flow into a PBPK Model to Predict the Effect of Food on the Pharmacokinetics of Orally Administered High-Extraction Drugs

Rachel H. Rose; David B. Turner; Sibylle Neuhoff; Masoud Jamei

ABSTRACTFollowing a meal, a transient increase in splanchnic blood flow occurs that can result in increased exposure to orally administered high-extraction drugs. Typically, physiologically based pharmacokinetic (PBPK) models have incorporated this increase in blood flow as a time-invariant fed/fasted ratio, but this approach is unable to explain the extent of increased drug exposure. A model for the time-varying increase in splanchnic blood flow following a moderate- to high-calorie meal (TV-QSplanch) was developed to describe the observed data for healthy individuals. This was integrated within a PBPK model and used to predict the contribution of increased splanchnic blood flow to the observed food effect for two orally administered high-extraction drugs, propranolol and ibrutinib. The model predicted geometric mean fed/fasted AUC and Cmax ratios of 1.24 and 1.29 for propranolol, which were within the range of published values (within 1.0–1.8-fold of values from eight clinical studies). For ibrutinib, the predicted geometric mean fed/fasted AUC and Cmax ratios were 2.0 and 1.84, respectively, which was within 1.1-fold of the reported fed/fasted AUC ratio but underestimated the reported Cmax ratio by up to 1.9-fold. For both drugs, the interindividual variability in fed/fasted AUC and Cmax ratios was underpredicted. This suggests that the postprandial change in splanchnic blood flow is a major mechanism of the food effect for propranolol and ibrutinib but is insufficient to fully explain the observations. The proposed model is anticipated to improve the prediction of food effect for high-extraction drugs, but should be considered with other mechanisms.


European Journal of Pharmaceutical Sciences | 2018

Development and applications of a physiologically-based model of paediatric oral drug absorption

Trevor N. Johnson; J.J. Bonner; Geoffrey T. Tucker; David B. Turner; Masoud Jamei

Abstract There is increasing interest in paediatric drug absorption and the development of biopharmaceutics tools to facilitate the development of oral formulations for neonates, infants and children. We describe the development and application of a physiologically‐based model of paediatric drug absorption applicable from full term birth onwards. Paediatric age‐specific parameters were included for salivary flow, gastric pH, gastric emptying (and associated food effects) and duodenal bile salt concentrations and the associated algorithms were integrated into a dissolution, absorption and metabolism model as part of a PBPK platform. For other parameters, there was either evidence for no age‐related changes or a lack of data, so that adult values were applied. An initial assessment of the model was carried out by simulating the oral absorption of theophylline, paracetamol and ketoconazole over a range of paediatric ages. The absorption of the first two drugs, both BCS class 1 compounds, was predicted to be slower in early neonates compared to older age groups (median tmax values of 3 vs 2 h, respectively), but with invariant fraction absorbed (fa). This is in agreement with clinical observations. The tmax of ketoconazole, a BCS class 2 compound, was predicted to be about 1 h in both neonates and adults, but the fa value was higher in the former (0.87 vs 0.69). There is clearly a need to expand the components of the model as new information on the ontogeny of GI tract parameters becomes available, and to assess it against more in vivo data with evidence of specific age‐related changes in oral drug absorption. Graphical abstract Figure. No caption available.


Molecular Pharmaceutics | 2017

Model-Based Analysis of Biopharmaceutic Experiments To Improve Mechanistic Oral Absorption Modeling: An Integrated in Vitro in Vivo Extrapolation Perspective Using Ketoconazole as a Model Drug

Shriram M. Pathak; Aaron Ruff; Edmund S. Kostewicz; Nikunjkumar Patel; David B. Turner; Masoud Jamei

Mechanistic modeling of in vitro data generated from metabolic enzyme systems (viz., liver microsomes, hepatocytes, rCYP enzymes, etc.) facilitates in vitro-in vivo extrapolation (IVIV_E) of metabolic clearance which plays a key role in the successful prediction of clearance in vivo within physiologically-based pharmacokinetic (PBPK) modeling. A similar concept can be applied to solubility and dissolution experiments whereby mechanistic modeling can be used to estimate intrinsic parameters required for mechanistic oral absorption simulation in vivo. However, this approach has not widely been applied within an integrated workflow. We present a stepwise modeling approach where relevant biopharmaceutics parameters for ketoconazole (KTZ) are determined and/or confirmed from the modeling of in vitro experiments before being directly used within a PBPK model. Modeling was applied to various in vitro experiments, namely: (a) aqueous solubility profiles to determine intrinsic solubility, salt limiting solubility factors and to verify pKa; (b) biorelevant solubility measurements to estimate bile-micelle partition coefficients; (c) fasted state simulated gastric fluid (FaSSGF) dissolution for formulation disintegration profiling; and (d) transfer experiments to estimate supersaturation and precipitation parameters. These parameters were then used within a PBPK model to predict the dissolved and total (i.e., including the precipitated fraction) concentrations of KTZ in the duodenum of a virtual population and compared against observed clinical data. The developed model well characterized the intraluminal dissolution, supersaturation, and precipitation behavior of KTZ. The mean simulated AUC0-t of the total and dissolved concentrations of KTZ were comparable to (within 2-fold of) the corresponding observed profile. Moreover, the developed PBPK model of KTZ successfully described the impact of supersaturation and precipitation on the systemic plasma concentration profiles of KTZ for 200, 300, and 400 mg doses. These results demonstrate that IVIV_E applied to biopharmaceutical experiments can be used to understand and build confidence in the quality of the input parameters and mechanistic models used for mechanistic oral absorption simulations in vivo, thereby improving the prediction performance of PBPK models. Moreover, this approach can inform the selection and design of in vitro experiments, potentially eliminating redundant experiments and thus helping to reduce the cost and time of drug product development.


European Journal of Pharmaceutical Sciences | 2014

PBPK models for the prediction of in vivo performance of oral dosage forms

Edmund S. Kostewicz; Leon Aarons; Martin Bergstrand; Michael B. Bolger; Aleksandra Galetin; Oliver J. D. Hatley; Masoud Jamei; Richard Lloyd; Xavier Pepin; Amin Rostami-Hodjegan; Erik Sjögren; Christer Tannergren; David B. Turner; Christian Wagner; Werner Weitschies; Jennifer B. Dressman


Journal of Pharmaceutical Sciences | 2013

Application of permeability-limited physiologically-based pharmacokinetic models: Part I–digoxin pharmacokinetics incorporating P-glycoprotein-mediated efflux

Sibylle Neuhoff; Karen Rowland Yeo; Zoe Barter; Masoud Jamei; David B. Turner; Amin Rostami-Hodjegan

Collaboration


Dive into the David B. Turner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leon Aarons

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge