Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Barefield is active.

Publication


Featured researches published by David Barefield.


Journal of Molecular and Cellular Cardiology | 2010

Phosphorylation and function of cardiac myosin binding protein-C in health and disease

David Barefield; Sakthivel Sadayappan

During the past 5 years there has been an increasing body of literature describing the roles cardiac myosin binding protein C (cMyBP-C) phosphorylation play in regulating cardiac function and heart failure. cMyBP-C is a sarcomeric thick filament protein that interacts with titin, myosin and actin to regulate sarcomeric assembly, structure and function. Elucidating the function of cMyBP-C is clinically important because mutations in this protein have been linked to cardiomyopathy in more than sixty million people worldwide. One function of cMyBP-C is to regulate cross-bridge formation through dynamic phosphorylation by protein kinase A, protein kinase C and Ca(2+)-calmodulin-activated kinase II, suggesting that cMyBP-C phosphorylation serves as a highly coordinated point of contractile regulation. Moreover, dephosphorylation of cMyBP-C, which accelerates its degradation, has been shown to associate with the development of heart failure in mouse models and in humans. Strikingly, cMyBP-C phosphorylation presents a potential target for therapeutic development as protection against ischemic-reperfusion injury, which has been demonstrated in mouse hearts. Also, emerging evidence suggests that cMyBP-C has the potential to be used as a biomarker for diagnosing myocardial infarction. Although many aspects of cMyBP-C phosphorylation and function remain poorly understood, cMyBP-C and its phosphorylation states have significant promise as a target for therapy and for providing a better understanding of the mechanics of heart function during health and disease. In this review we discuss the most recent findings with respect to cMyBP-C phosphorylation and function and determine potential future directions to better understand the functional role of cMyBP-C and phosphorylation in sarcomeric structure, myocardial contractility and cardioprotection.


Circulation | 2012

Interleukin-10 Treatment Attenuates Pressure Overload–Induced Hypertrophic Remodeling and Improves Heart Function via Signal Transducers and Activators of Transcription 3–Dependent Inhibition of Nuclear Factor-κB

Suresh K Verma; Prasanna Krishnamurthy; David Barefield; Neha Singh; Rajesh Gupta; Erin Lambers; Melissa Thal; Alexander R. Mackie; Eneda Hoxha; Veronica Ramirez; Gangjian Qin; Sakthivel Sadayappan; Asish K. Ghosh; Raj Kishore

Background— Inflammation plays a critical role in adverse cardiac remodeling and heart failure. Therefore, approaches geared toward inhibiting inflammation may provide therapeutic benefits. We tested the hypotheses that genetic deletion of interleukin-10 (IL-10), a potent antiinflammatory cytokine, exacerbates pressure overload–induced adverse cardiac remodeling and hypertrophy and that IL-10 therapy inhibits this pathology. Methods and Results— Cardiac hypertrophy was induced in wild-type and IL-10 knockout mice by isoproterenol (ISO) infusion. ISO-induced left ventricular dysfunction and hypertrophic remodeling, including fibrosis and fetal gene expression, were further exaggerated in knockout mice compared with wild-type mice. Systemic recombinant mouse IL-10 administration markedly improved left ventricular function and not only inhibited but also reversed ISO-induced cardiac remodeling. Intriguingly, a very similar cardioprotective response of IL-10 was found in transverse aortic constriction–induced hypertrophy and heart failure models. In neonatal rat ventricular myocytes and H9c2 myoblasts, ISO activated nuclear factor-&kgr;B and inhibited signal transducers and activators of transcription 3 (STAT3) phosphorylation. Interestingly, IL-10 suppressed ISO-induced nuclear factor-&kgr;B activation and attenuated STAT3 inhibition. Moreover, pharmacological and genetic inhibition of STAT3 reversed the protective effects of IL-10, whereas ectopic expression of constitutively active STAT3 mimicked the IL-10 responses on the ISO effects, confirming that the IL-10–mediated inhibition of nuclear factor-&kgr;B is STAT3 dependent. Conclusion— Taken together, our results suggest IL-10 treatment as a potential therapeutic approach to limit the progression of pressure overload–induced adverse cardiac remodeling.


Circulation Research | 2011

A Critical Function for Ser-282 in Cardiac Myosin Binding Protein-C Phosphorylation and Cardiac Function

Sakthivel Sadayappan; James Gulick; Hanna Osinska; David Barefield; Friederike Cuello; Metin Avkiran; Valerie M. Lasko; John N. Lorenz; Marjorie Maillet; Jody L. Martin; Joan Heller Brown; Donald M. Bers; Jeffery D. Molkentin; Jeanne James; Jeffrey Robbins

Rationale: Cardiac myosin-binding protein-C (cMyBP-C) phosphorylation at Ser-273, Ser-282, and Ser-302 regulates myocardial contractility. In vitro and in vivo experiments suggest the nonequivalence of these sites and the potential importance of Ser-282 phosphorylation in modulating the proteins overall phosphorylation and myocardial function. Objective: To determine whether complete cMyBP-C phosphorylation is dependent on Ser-282 phosphorylation and to define its role in myocardial function. We hypothesized that Ser-282 regulates Ser-302 phosphorylation and cardiac function during &bgr;-adrenergic stimulation. Methods and Results: Using recombinant human C1-M-C2 peptides in vitro, we determined that protein kinase A can phosphorylate Ser-273, Ser-282, and Ser-302. Protein kinase C can also phosphorylate Ser-273 and Ser-302. In contrast, Ca2+-calmodulin-activated kinase II targets Ser-302 but can also target Ser-282 at nonphysiological calcium concentrations. Strikingly, Ser-302 phosphorylation by Ca2+-calmodulin-activated kinase II was abolished by ablating the ability of Ser-282 to be phosphorylated via alanine substitution. To determine the functional roles of the sites in vivo, three transgenic lines, which expressed cMyBP-C containing either Ser-273-Ala-282-Ser-302 (cMyBP-CSAS), Ala-273-Asp-282-Ala-302 (cMyBP-CADA), or Asp-273-Ala-282-Asp-302 (cMyBP-CDAD), were generated. Mutant protein was completely substituted for endogenous cMyBP-C by breeding each mouse line into a cMyBP-C null (t/t) background. Serine-to-alanine substitutions were used to ablate the abilities of the residues to be phosphorylated, whereas serine-to-aspartate substitutions were used to mimic the charged state conferred by phosphorylation. Compared to control nontransgenic mice, as well as transgenic mice expressing wild-type cMyBP-C, the transgenic cMyBP-CSAS(t/t), cMyBP-CADA(t/t), and cMyBP-CDAD(t/t) mice showed no increases in morbidity and mortality and partially rescued the cMyBP-C(t/t) phenotype. The loss of cMyBP-C phosphorylation at Ser-282 led to an altered &bgr;-adrenergic response. In vivo hemodynamic studies revealed that contractility was unaffected but that cMyBP-CSAS(t/t) hearts showed decreased diastolic function at baseline. However, the normal increases in cardiac function (increased contractility/relaxation) as a result of infusion of &bgr;-agonist was significantly decreased in all of the mutants, suggesting that competency for phosphorylation at multiple sites in cMyBP-C is a prerequisite for normal &bgr;-adrenergic responsiveness. Conclusions: Ser-282 has a unique regulatory role in that its phosphorylation is critical for the subsequent phosphorylation of Ser-302. However, each residue plays a role in regulating the contractile response to &bgr;-agonist stimulation.


Cell Metabolism | 2015

The Genetic Landscape of Cardiomyopathy and Its Role in Heart Failure

Elizabeth M. McNally; David Barefield; Megan J. Puckelwartz

Heart failure is highly influenced by heritability, and nearly 100 genes link to familial cardiomyopathy. Despite the marked genetic diversity that underlies these complex cardiovascular phenotypes, several key genes and pathways have emerged. Hypertrophic cardiomyopathy is characterized by increased contractility and a greater energetic cost of cardiac output. Dilated cardiomyopathy is often triggered by mutations that disrupt the giant protein titin. The energetic consequences of these mutations offer molecular targets and opportunities for new drug development and gene correction therapies.


Journal of Cell Biology | 2016

An actin-dependent annexin complex mediates plasma membrane repair in muscle

Alexis R. Demonbreun; Mattia Quattrocelli; David Barefield; Madison V. Allen; Kaitlin E. Swanson; Elizabeth M. McNally

Demonbreun et al. visualized muscle membrane repair in real time after laser-induced microdamage. Annexin proteins were observed to form a repair cap at the site of injury, supporting a shoulder-like structure containing EHD1, EHD2, dysferlin, and MG53.


Journal of Clinical Investigation | 2015

Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping

Quan Q. Gao; Eugene Wyatt; Jeff A. Goldstein; Peter P. LoPresti; Lisa M. Castillo; Alec Gazda; Natalie Petrossian; Judy U. Earley; Michele Hadhazy; David Barefield; Alexis R. Demonbreun; Carsten G. Bönnemann; Matthew J. Wolf; Elizabeth M. McNally

Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations.


Biophysical Journal | 2014

Phosphorylation of cMyBP-C Affects Contractile Mechanisms in a Site-specific Manner

Li Wang; Xiang Ji; David Barefield; Sakthivel Sadayappan; M. Kawai

Cardiac myosin binding protein-C (cMyBP-C) is a cardiac-specific, thick-filament regulatory protein that is differentially phosphorylated at Ser(273), Ser(282), and Ser(302) by various kinases and modulates contraction. In this study, phosphorylation-site-specific effects of cMyBP-C on myocardial contractility and cross-bridge kinetics were studied by sinusoidal analysis in papillary and trabecular muscle fibers isolated from t/t (cMyBP-C-null) mice and in their counterparts in which cMyBP-C contains the ADA (Ala(273)-Asp(282)-Ala(302)), DAD (Asp(273)-Ala(282)-Asp(302)), and SAS (Ser(273)-Ala(282)-Ser(302)) mutations; the results were compared to those from mice expressing the wild-type (WT) transgene on the t/t background. Under standard activating conditions, DAD fibers showed significant decreases in tension (~50%), stiffness, the fast apparent rate constant 2πc, and its magnitude C, as well as its magnitude H, but an increase in the medium rate constant 2πb, with respect to WT. The t/t fibers showed a smaller drop in stiffness and a significant decrease in 2πc that can be explained by isoform shift of myosin heavy chain. In the pCa-tension study using the 8 mM phosphate (Pi) solution, there was hardly any difference in Ca(2+) sensitivity (pCa50) and cooperativity (nH) between the mutant and WT samples. However, in the solutions without Pi, DAD showed increased nH and slightly decreased pCa50. We infer from these observations that the nonphosphorylatable residue 282 combined with phosphomimetic residues Asp(273) and/or Asp(302) (in DAD) is detrimental to cardiomyocytes by lowering isometric tension and altering cross-bridge kinetics with decreased 2πc and increased 2πb. In contrast, a single change of residue 282 to nonphosphorylatable Ala (SAS), or to phosphomimetic Asps together with the changes of residues 273 and 302 to nonphosphorylatable Ala (ADA) causes minute changes in fiber mechanics.


American Journal of Pathology | 2016

Enhanced Muscular Dystrophy from Loss of Dysferlin Is Accompanied by Impaired Annexin A6 Translocation after Sarcolemmal Disruption

Alexis R. Demonbreun; Madison V. Allen; James L. Warner; David Barefield; Swathi Krishnan; Kaitlin E. Swanson; Judy U. Earley; Elizabeth M. McNally

Dysferlin is a membrane-associated protein implicated in membrane resealing; loss of dysferlin leads to muscular dystrophy. We examined the same loss-of-function Dysf mutation in two different mouse strains, 129T2/SvEmsJ (Dysf(129)) and C57BL/6J (Dysf(B6)). Although there are many genetic differences between these two strains, we focused on polymorphisms in Anxa6 because these variants were previously associated with modifying a pathologically distinct form of muscular dystrophy and increased the production of a truncated annexin A6 protein. Dysferlin deficiency in the C57BL/6J background was associated with increased Evans Blue dye uptake into muscle and increased serum creatine kinase compared to the 129T2/SvEmsJ background. In the C57BL/6J background, dysferlin loss was associated with enhanced pathologic severity, characterized by decreased mean fiber cross-sectional area, increased internalized nuclei, and increased fibrosis, compared to that in Dysf(129) mice. Macrophage infiltrate was also increased in Dysf(B6) muscle. High-resolution imaging of live myofibers demonstrated that fibers from Dysf(B6) mice displayed reduced translocation of full-length annexin A6 to the site of laser-induced sarcolemmal disruption compared to Dysf(129) myofibers, and impaired translocation of annexin A6 associated with impaired resealing of the sarcolemma. These results provide one mechanism by which the C57BL/6J background intensifies dysferlinopathy, giving rise to a more severe form of muscular dystrophy in the Dysf(B6) mouse model through increased membrane leak and inflammation.


Oxidative Medicine and Cellular Longevity | 2015

Oxidative Stress in Dilated Cardiomyopathy Caused by MYBPC3 Mutation

Thomas L. Lynch; Mayandi Sivaguru; Murugesan Velayutham; Arturo Cardounel; Michelle Michels; David Barefield; Suresh Govindan; Cristobal G. dos Remedios; Jolanda van der Velden; Sakthivel Sadayappan

Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C). However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM) expressing a homozygous MYBPC3 mutation (cMyBP-C(t/t)) was used, compared to wild-type (WT) mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG) ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure.


Journal of Clinical Investigation | 2017

Intermittent glucocorticoid steroid dosing enhances muscle repair without eliciting muscle atrophy

Mattia Quattrocelli; David Barefield; James L. Warner; Andy H. Vo; Michele Hadhazy; Judy U. Earley; Alexis R. Demonbreun; Elizabeth M. McNally

Glucocorticoid steroids such as prednisone are prescribed for chronic muscle conditions such as Duchenne muscular dystrophy, where their use is associated with prolonged ambulation. The positive effects of chronic steroid treatment in muscular dystrophy are paradoxical because these steroids are also known to trigger muscle atrophy. Chronic steroid use usually involves once-daily dosing, although weekly dosing in children has been suggested for its reduced side effects on behavior. In this work, we tested steroid dosing in mice and found that a single pulse of glucocorticoid steroids improved sarcolemmal repair through increased expression of annexins A1 and A6, which mediate myofiber repair. This increased expression was dependent on glucocorticoid response elements upstream of annexins and was reinforced by the expression of forkhead box O1 (FOXO1). We compared weekly versus daily steroid treatment in mouse models of acute muscle injury and in muscular dystrophy and determined that both regimens provided comparable benefits in terms of annexin gene expression and muscle repair. However, daily dosing activated atrophic pathways, including F-box protein 32 (Fbxo32), which encodes atrogin-1. Conversely, weekly steroid treatment in mdx mice improved muscle function and histopathology and concomitantly induced the ergogenic transcription factor Krüppel-like factor 15 (Klf15) while decreasing Fbxo32. These findings suggest that intermittent, rather than daily, glucocorticoid steroid regimen promotes sarcolemmal repair and muscle recovery from injury while limiting atrophic remodeling.

Collaboration


Dive into the David Barefield's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suresh Govindan

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohit Kumar

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas L. Lynch

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gangjian Qin

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge