David Belin
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Belin.
Philosophical Transactions of the Royal Society B | 2008
Barry J. Everitt; David Belin; Daina Economidou; Yann Pelloux; Jeffrey W. Dalley; Trevor W. Robbins
We hypothesize that drug addiction can be viewed as the endpoint of a series of transitions from initial voluntary drug use through the loss of control over this behaviour, such that it becomes habitual and ultimately compulsive. We describe evidence that the switch from controlled to compulsive drug seeking represents a transition at the neural level from prefrontal cortical to striatal control over drug-seeking and drug-taking behaviours as well as a progression from ventral to more dorsal domains of the striatum, mediated by its serially interconnecting dopaminergic circuitry. These neural transitions depend upon the neuroplasticity induced by chronic self-administration of drugs in both cortical and striatal structures, including long-lasting changes that are the consequence of toxic drug effects. We further summarize evidence showing that impulsivity, a spontaneously occurring behavioural tendency in outbred rats that is associated with low dopamine D2/3 receptors in the nucleus accumbens, predicts both the propensity to escalate cocaine intake and the switch to compulsive drug seeking and addiction.
Science | 2008
David Belin; Adam C. Mar; Jeffrey W. Dalley; Trevor W. Robbins; Barry J. Everitt
Both impulsivity and novelty-seeking have been suggested to be behavioral markers of the propensity to take addictive drugs. However, their relevance for the vulnerability to compulsively seek and take drugs, which is a hallmark feature of addiction, is unknown. We report here that, whereas high reactivity to novelty predicts the propensity to initiate cocaine self-administration, high impulsivity predicts the development of addiction-like behavior in rats, including persistent or compulsive drug-taking in the face of aversive outcomes. This study shows experimental evidence that a shift from impulsivity to compulsivity occurs during the development of addictive behavior, which provides insights into the genesis and neural mechanisms of drug addiction.
Behavioural Brain Research | 2009
David Belin; Sietse Jonkman; Anthony Dickinson; Trevor W. Robbins; Barry J. Everitt
In this review we discuss the evidence that drug addiction, defined as a maladaptive compulsive habit, results from the progressive subversion by addictive drugs of striatum-dependent operant and Pavlovian learning mechanisms that are usually involved in the control over behaviour by stimuli associated with natural reinforcement. Although mainly organized through segregated parallel cortico-striato-pallido-thalamo-cortical loops involved in motor or emotional functions, the basal ganglia, and especially the striatum, are key mediators of the modulation of behavioural responses, under the control of both action-outcome and stimulus-response mechanisms, by incentive motivational processes and Pavlovian associations. Here we suggest that protracted exposure to addictive drugs recruits serial and dopamine-dependent, striato-nigro-striatal ascending spirals from the nucleus accumbens to more dorsal regions of the striatum that underlie a shift from action-outcome to stimulus-response mechanisms in the control over drug seeking. When this progressive ventral to dorsal striatum shift is combined with drug-associated Pavlovian influences from limbic structures such as the amygdala and the orbitofrontal cortex, drug seeking behaviour becomes established as an incentive habit. This instantiation of implicit sub-cortical processing of drug-associated stimuli and instrumental responding might be a key mechanism underlying the development of compulsive drug seeking and the high vulnerability to relapse which are hallmarks of drug addiction.
Nature Reviews Neuroscience | 2011
Aldo Badiani; David Belin; David H. Epstein; Donna J. Calu; Yavin Shaham
The publication of the psychomotor stimulant theory of addiction in 1987 and the finding that addictive drugs increase dopamine concentrations in the rat mesolimbic system in 1988 have led to a predominance of psychobiological theories that consider addiction to opiates and addiction to psychostimulants as essentially identical phenomena. Indeed, current theories of addiction — hedonic allostasis, incentive sensitization, aberrant learning and frontostriatal dysfunction — all argue for a unitary account of drug addiction. This view is challenged by behavioural, cognitive and neurobiological findings in laboratory animals and humans. Here, we argue that opiate addiction and psychostimulant addiction are behaviourally and neurobiologically distinct and that the differences have important implications for addiction treatment, addiction theories and future research.
Neuropsychopharmacology | 2011
David Belin; Nadège Berson; Eric Balado; Pier Vincenzo Piazza; Véronique Deroche-Gamonet
Sensation/novelty-seeking is amongst the best markers of cocaine addiction in humans. However, its implication in the vulnerability to cocaine addiction is still a matter of debate, as it is unclear whether this trait precedes or follows the development of addiction. Sensation/novelty-seeking trait has been identified in rats on the basis of either novelty-induced locomotor activity (high-responder (HR) trait) or novelty-induced place preference (high-novelty-preference trait (HNP)). HR and HNP traits have been associated with differential sensitivity to psychostimulants. However, it has recently been demonstrated that HR rats do not develop compulsive cocaine self-administration (SA) after protracted exposure to the drug, thereby suggesting that at least one dimension of sensation/novelty seeking in the rat is dissociable from the vulnerability to switch from controlled to compulsive cocaine SA. We therefore investigated whether HNP, as measured as the propensity to choose a new environment in a free choice procedure, as opposed to novelty-induced locomotor activity, predicts the vulnerability to, and the severity of, addiction-like behavior for cocaine. For this, we identified HR/LR rats and HNP/LNP rats before any exposure to cocaine. After 60 days of cocaine SA, each rat was given an addiction score based on three addiction-like behaviors (persistence of responding when the drug is signaled as not available, high breakpoint under progressive ratio schedule and resistance to punishment) that resemble the clinical features of drug addiction, namely inability to refrain from drug seeking, high motivation for the drug and compulsive drug use despite adverse consequences. We show that, as opposed to HR rats, HNP rats represent a sub-population predisposed to compulsive cocaine intake, displaying higher addiction scores than LNP rats. This study thereby provides new insights into the factors predisposing to cocaine addiction, supporting the hypothesis that addiction is sustained by two vulnerable phenotypes: a ‘drug use prone’ phenotype such as HR which brings an individual to develop drug use and an ‘addiction prone’ phenotype, such as HNP, which facilitates the shift from sustained to compulsive drug intake and addiction.
Current Opinion in Neurobiology | 2013
David Belin; Aude Belin-Rauscent; Jennifer E. Murray; Barry J. Everitt
Drug addiction may be associated with a loss of executive control over maladaptive incentive habits. We hypothesize that these incentive habits result from a pathological coupling of drug-influenced motivational states and a rigid stimulus-response habit system by which drug-associated stimuli through automatic processes elicit and maintain drug seeking. Neurally, incentive habits may depend upon an interaction between the basolateral amygdala and nucleus accumbens core, together with the progressive development of a ventral-to-dorsolateral striatum functional coupling through the recruitment of striato-nigro-striatal dopamine-dependent loop circuitry. Recent evidence suggests that both ventral striatal and central nucleus pathways from the amygdala may be required for the recruitment of DLS-dependent control over habitual behavior.
Neuropsychopharmacology | 2010
Morgane Besson; David Belin; Ruth McNamara; David E. H. Theobald; Aude Castel; Victoria L Beckett; Ben M Crittenden; Amy Hauck Newman; Barry J. Everitt; Trevor W. Robbins; Jeffrey W. Dalley
Previous research has identified the nucleus accumbens (NAcb) as an important brain region underlying inter-individual variation in impulsive behavior. Such variation has been linked to decreased dopamine (DA) D2/3 receptor availability in the ventral striatum of rats exhibiting spontaneously high levels of impulsivity on a 5-choice serial reaction time (5-CSRT) test of sustained visual attention. This study investigated the involvement of DA D2/3 receptors in the NAcb core (NAcbC) and the NAcb shell (NAcbS) in impulsivity. We investigated the effects of a DA D2/3 receptor antagonist (nafadotride) and a DA D2/3 partial agonist (aripiprazole) infused directly into either the NAcbC or NAcbS of rats selected for high (HI) and low (LI) impulsivity on the 5-CSRT task. Nafadotride increased significantly the level of impulsivity when infused into the NAcbS, but decreased impulsivity when infused into the NAcbC of HI rats. By contrast, intra-NAcb microinfusions of aripiprazole did not affect impulsivity. Systemic administration of nafadotride had no effect on impulsive behavior but increased the number of omissions and correct response latencies, whereas systemic injections of aripiprazole decreased impulsive and perseverative behavior, and increased the number of omissions and correct response latencies. These findings indicate an opponent modulation of impulsive behavior by DA D2/3 receptors in the NAcbS and NAcbC. Such divergent roles may have relevance for the etiology and treatment of clinical disorders of behavioral control, including attention-deficit hyperactivity disorder and drug addiction.
Biological Psychiatry | 2009
David Belin; Eric Balado; Pier Vincenzo Piazza; Véronique Deroche-Gamonet
BACKGROUND Clinical observations suggest that cocaine addiction often emerges with new patterns of use. Whether these changes are a cause of addiction or its consequence is unknown. We investigated whether the development of an addiction-like behavior in the rat is associated with the pattern of cocaine intake and with cocaine craving, a major feature of cocaine addiction. METHODS To determine whether changes in the pattern of cocaine use and enhanced craving precede or parallel the onset of addiction, we used a rat addiction model that incorporates core features of human addiction. For this purpose, the pattern of inter-infusion intervals (a measure of pattern of cocaine intake), sensitivity to cocaine-induced reinstatement (a measure of cocaine craving), and addiction-like behaviour were assessed over several months of intravenous cocaine self-administration. RESULTS We found that, even at early stages of cocaine self-administration, both the pattern of cocaine intake and the intensity of drug-induced reinstatement predict the severity of cocaine use, measured after 75 days of self-administration. CONCLUSIONS Our results identify key predictors of cocaine addiction-intensified pattern of drug use and high drug-induced craving-that may help in the identification of subjects at risk for subsequent development of severe cocaine addiction.
Neuropsychopharmacology | 2012
Jennifer E. Murray; David Belin; Barry J. Everitt
The present study investigated the involvement of dopamine-dependent mechanisms in the anterior dorsolateral (aDLS) and posterior dorsomedial (pDMS) striatum during the early- and late-stage performance of cocaine-seeking behavior. Rats were trained to self-administer cocaine under continuous reinforcement (fixed-ratio 1, FR1) with a 20-s light conditioned stimulus (CS) presented contingently upon each infusion. After a week, rats were challenged by a change in contingency to seek cocaine during a 15-min period uninfluenced by cocaine during which each response was reinforced by a 1-s CS presentation. Dopamine transmission blockade by intracranial infusions of α-flupenthixol only in the pDMS, but not in the aDLS, dose dependently reduced performance of cue-controlled cocaine seeking at the early stage of self-administration. One cohort of rats was then trained with increasing response requirements until completing 15 sessions under a second-order schedule [FI15(FR10:S)] so that cocaine-seeking performance became well established. At this stage, intra-aDLS, but not pDMS, α-flupenthixol infusions dose dependently reduced active lever presses. The second cohort of rats continued to self-administer cocaine under the FR1 schedule such that their drug intake was matched to the late-stage performance group. α-Flupenthixol in the pDMS, but not in the aDLS, again prevented the performance of cocaine seeking. These results show that dopamine transmission in the pDMS is required for initial performance of goal-directed cocaine seeking, and that its role is ultimately subverted and devolves instead to the aDLS only following training with high rates of cocaine-seeking behavior, supporting the theory of dynamic shifts in the striatal control over cocaine seeking between goal-directed and habitual performance.
Cold Spring Harbor Perspectives in Medicine | 2012
David Belin; Véronique Deroche-Gamonet
Epidemiological studies have revealed striking associations between several distinct behavioral/personality traits and drug addiction, with a large emphasis on the sensation-seeking trait and the associated impulsive dimension of personality. However, in human studies, it is difficult to identify whether personality/behavioral traits actually contribute to increased vulnerability to drug addiction or reflect psychobiological adaptations to chronic drug exposure. Here we show how animal models, including the first multi-symptomatic model of addiction in the rat, have contributed to a better understanding of the relationships between different subdimensions of the sensation-seeking trait and different stages of the development of cocaine addiction, from vulnerability to initiation of cocaine self-administration to the transition to compulsive drug intake. We argue that sensation seeking predicts vulnerability to use cocaine, whereas novelty seeking, akin to high impulsivity, predicts instead vulnerability to shift from controlled to compulsive cocaine use, that is, addiction.