Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Berthier is active.

Publication


Featured researches published by David Berthier.


PLOS ONE | 2012

A quasi-exclusive European ancestry in the senepol tropical cattle breed highlights the importance of the slick locus in tropical adaptation

Laurence Flori; Mary Isabel Gonzatti; Sophie Thevenon; Isabelle Chantal; Joar Pinto; David Berthier; Pedro María Aso; Mathieu Gautier

Background The Senepol cattle breed (SEN) was created in the early XXth century from a presumed cross between a European (EUT) breed (Red Poll) and a West African taurine (AFT) breed (N’Dama). Well adapted to tropical conditions, it is also believed trypanotolerant according to its putative AFT ancestry. However, such origins needed to be verified to define relevant husbandry practices and the genetic background underlying such adaptation needed to be characterized. Methodology/Principal Findings We genotyped 153 SEN individuals on 47,365 SNPs and combined the resulting data with those available on 18 other populations representative of EUT, AFT and Zebu (ZEB) cattle. We found on average 89% EUT, 10.4% ZEB and 0.6% AFT ancestries in the SEN genome. We further looked for footprints of recent selection using standard tests based on the extent of haplotype homozygosity. We underlined i) three footprints on chromosome (BTA) 01, two of which are within or close to the polled locus underlying the absence of horns and ii) one footprint on BTA20 within the slick hair coat locus, involved in thermotolerance. Annotation of these regions allowed us to propose three candidate genes to explain the observed signals (TIAM1, GRIK1 and RAI14). Conclusions/Significance Our results do not support the accepted concept about the AFT origin of SEN breed. Initial AFT ancestry (if any) might have been counter-selected in early generations due to breeding objectives oriented in particular toward meat production and hornless phenotype. Therefore, SEN animals are likely susceptible to African trypanosomes which questions the importation of SEN within the West African tsetse belt, as promoted by some breeding societies. Besides, our results revealed that SEN breed is predominantly a EUT breed well adapted to tropical conditions and confirmed the importance in thermotolerance of the slick locus.


Veterinary Parasitology | 2009

Development and application of an antibody-ELISA to follow up a #Trypanosoma evansi# outbreak in a dromedary camel herd in France

Marc Desquesnes; Géraldine Bossard; Sophie Thévenon; Delphine Patrel; Sophie Ravel; Djamila Pavlovic; Stéphane Herder; Olivier Patout; Elisabeth Lepetitcolin; Philippe Hollzmuller; David Berthier; Philippe Jacquiet; Gérard Cuny

An outbreak of trypanosomosis was observed for the first time in metropolitan France in October 2006, when five camels were proved to be infected by Trypanosoma evansi using parasitological methods. The parasite was isolated and used to produce a soluble antigen for antibody-enzyme linked immunosorbent assay (ELISA) in a protocol derived from a method previously developed for sheep and humans but using protein A conjugate. The animals were treated on three instances, alternatively with melarsomine hydrochloride and quinapyramine and followed up on a monthly basis for 2 years with various diagnostic techniques including parasitological, serological and DNA-based methods. Initially, five animals were detected as being positive using ELISA with 83.3% concordance to parasitological tests. Immediately after the first treatment, parasites and DNA disappeared in all animals; antibody levels decreased regularly until ELISA became negative 3-4 months later. Ten months after the first treatment, parasites and antibodies were detected again in one of the camels previously found to be infected. A retrospective study indicated that the weight of this animal had been underestimated; consequently, it had received underdosages of both trypanocides. However, since hypotheses of re-infection or relapse could not be fully substantiated, it is not known whether the ELISA results for this animal were true- or false-negative over a 7-month period. The study confirmed the value of this ELISA using protein A conjugate to detect antibodies directed against T. evansi in camels and the need to use several diagnostic techniques to optimize detection of infected animals. A warning is raised on surra, a potentially emerging disease in Europe.


Molecular Ecology | 2014

Adaptive admixture in the West African bovine hybrid zone: insight from the Borgou population

Laurence Flori; Sophie Thevenon; Guiguigbaza-Kossigan Dayo; Marcel Senou; Souleymane Sylla; David Berthier; Katayoun Moazami-Goudarzi; Mathieu Gautier

Understanding the adaptive response to environmental fluctuations represents a central issue in evolutionary biology. Population admixture between divergent ancestries has often been considered as an efficient short‐term adaptation strategy. Cattle populations from the West African Bos taurus × Bos indicus hybrid zone represent a valuable resource to characterize the effect of such adaptive admixture at the genome level. We here provide a detailed assessment of the global and local genome ancestries of the Borgou breed, one of the most representative cattle of this hybrid zone. We analysed a large data set consisting of 38 100 SNPs genotyped on 203 Borgou and 591 individuals representative of all the different cattle ancestries. At the global genomic level, we show that Borgou is a stabilized admixed breed whose origin (c. 130 years ago) traces back to the great African rinderpest pandemic, several centuries after the last admixture events, the West African zebus originate from (c. 500 years ago). To identify footprints of adaptive admixture, we combined the identification of signatures of selection and the functional annotation of the underlying genes using systems biology tools. The detection of the SILV coat coloration gene likely under artificial selection may be viewed as a validation of our approach. Overall, our results suggest that the long‐term presence of pathogens and the intermediate environmental conditions are the main acting selective pressures. Our analytical framework can be extended to other model or nonmodel species to understand the process that shapes the patterns of genetic variability in hybrid zones.


Annals of the New York Academy of Sciences | 2002

Molecular Immunogenetics in Susceptibility to Bovine Dermatophilosis

Jean-Charles Maillard; Isabelle Chantal; David Berthier; Sophie Thevenon; I. Sidibé; Hanta Razafindraibe

Abstract: To identify molecular genetic markers of resistance or susceptibility to dermatophilosis in cattle, we used a functional candidate gene approach to analyze the DNA polymorphisms of targeted genes encoding molecules implicated in known mechanisms of both nonspecific and specific immune responses existing in the pathogen/host interface mechanisms. The most significant results were obtained within the Major Histocompatibility Complex (MHC) where the BoLA‐DRB3 and DQB genes encode molecules involved in the antigen presentation to T cell receptors. A unique BoLA class II haplotype, made up of one DRB3 exon 2 allele and one DQB allele, highly correlates with the susceptibility character (P < 0.001). This haplotype marker of susceptibility was also found and validated in other bovine populations. A eugenic marker‐assisted selection was developed in the field by eliminating only the animals having this haplotype. The disease prevalence was thereby reduced from 0.76 to 0.02 over 5 years. A crossbreeding plan is in progress to study the genetic transmission of the genotypic and phenotypic characters of susceptibility to dermatophilosis. In conclusion, we discuss several hypotheses at the molecular and cellular levels to better define the exact role of the MHC molecules in disease control and to answer the question: How is MHC diversity selectively maintained by natural selection imposed by pathogens?


Animal Genetics | 2012

Association studies in QTL regions linked to bovine trypanotolerance in a West African crossbred population

Guiguigbaza-Kossigan Dayo; Mathieu Gautier; David Berthier; Jean-Paul Poivey; Issa Sidibé; Zakaria Bengaly; A. Eggen; Didier Boichard; Sophie Thevenon

African animal trypanosomosis is a parasitic blood disease transmitted by tsetse flies and is widespread in sub-Saharan Africa. West African taurine breeds have the ability, known as trypanotolerance, to limit parasitaemia and anaemia and remain productive in enzootic areas. Several quantitative trait loci (QTL) underlying traits related to trypanotolerance have been identified in an experimentally infected F(2) population resulting from a cross between taurine and zebu cattle. Although this information is highly valuable, the QTL remain to be confirmed in populations subjected to natural conditions of infection, and the corresponding regions need to be refined. In our study, 360 West African cattle were phenotyped for the packed cell volume control under natural conditions of infection in south-western Burkina Faso. Phenotypes were assessed by analysing data from previous cattle monitored over 2 years in an area enzootic for trypanosomosis. We further genotyped for 64 microsatellite markers mapping within four previously reported QTL on BTA02, BTA04, BTA07 and BTA13. These data enabled us to estimate the heritability of the phenotype using the kinship matrix between individuals computed from genotyping data. Thus, depending on the estimators considered and the method used, the heritability of anaemia control ranged from 0.09 to 0.22. Finally, an analysis of association identified an allele of the MNB42 marker on BTA04 as being strongly associated with anaemia control, and a candidate gene, INHBA, as being close to that marker.


Annals of the New York Academy of Sciences | 2008

Pathogeno-Proteomics toward a new approach of host-vector-pathogen interactions

Philippe Holzmuller; Pascal Grébaut; Jean-Paul Brizard; David Berthier; Isabelle Chantal; Géraldine Bossard; Bruno Bucheton; Frédéric Vezilier; Paul Chuchana; Rachel Bras-Gonçalves; Jean-Loup Lemesre; Philippe Vincendeau; Gérard Cuny; Roger Frutos; David G. Biron

Many scientists working on pathogens (viruses, bacteria, fungi, parasites) are betting heavily on data generated by longitudinal genomic–transcriptomic–proteomic studies to explain biochemical host–vector–pathogen interactions and thus to contribute to disease control. Availability of genome sequences of various organisms, from viruses to complex metazoans, led to the discovery of the functions of the genes themselves. The postgenomic era stimulated the development of proteomic and bioinformatics tools to identify the locations, functions, and interactions of the gene products in tissues and/or cells of living organisms. Because of the diversity of available methods and the level of integration they promote, proteomics tools are potentially able to resolve interesting issues specific not only to host–vector–pathogen interactions in cell immunobiology, but also to ecology and evolution, population biology, and adaptive processes. These new analytical tools, as all new tools, contain pitfalls directly related to experimental design, statistical treatment, and protein identification. Nevertheless, they offer the potency of building large protein–protein interaction networks for in silico analysis of novel biological entities named “interactomes,” a way of modeling host–vector–pathogen interactions to define new interference strategies.


Infection, Genetics and Evolution | 2012

APOL1 expression is induced by Trypanosoma brucei gambiense infection but is not associated with differential susceptibility to sleeping sickness

Hamidou Ilboudo; David Berthier; Mamadou Camara; Oumou Camara; Jacques Kaboré; Mamadou Leno; Sow Keletigui; Isabelle Chantal; Vincent Jamonneau; Adrien Marie Gaston Belem; Gérard Cuny; Bruno Bucheton

Most African trypanosome species are sensitive to trypanolytic factors (TLFs) present in human serum. Trypanosome lysis was demonstrated to be associated with apolipoprotein L-I (APOL1). Trypanosoma brucei (T. b.) gambiense and Trypanosoma brucei rhodesiense, the two human infective trypanosome species, have both developed distinct resistance mechanisms to APOL1 mediated lysis. Whereas T. b. rhodesiense resistance is linked with the expression of the serum resistance associated (SRA) protein that interacts with APOL1 inside the parasite lysosome, inhibiting its lytic action; T. b. gambiense resistance is rather controlled by a reduced expression of the parasite HpHb receptor, limiting APOL1 absorption by trypanosomes. Based on this last observation we hypothesised that variation in the host APOL1 environment could significantly alter T. b. gambiense growth and thus resistance/susceptibility to sleeping sickness. To test this hypothesis, we have measured blood APOL1 relative expression in HAT patients, uninfected endemic controls and serologically positive subjects (SERO TL(+)) that are suspected to control infection to parasitological levels that are undetectable by the available test used in the field. All RNA samples were obtained from medical surveys led in the HAT mangrove foci of Coastal Guinea. Results indicate that APOL1 expression is a complex trait dependant on a variety of factors that need to be taken into account in the analysis. Nevertheless, multivariate analysis showed that APOL1 expression levels were significantly higher in both HAT and SERO TL(+) subject as compared to endemic controls (p=0.006). This result suggests that APOL1 expression is likely induced by T. b. gambiense, but is not related to resistance/susceptibility in its human host.


PLOS ONE | 2015

A comparison of phenotypic traits related to trypanotolerance in five west african cattle breeds highlights the value of shorthorn taurine breeds.

David Berthier; Moana Peylhard; Guiguigbaza-Kossigan Dayo; Laurence Flori; Souleymane Sylla; Seydou Bolly; Hassane Sakande; Isabelle Chantal; Sophie Thevenon

Background Animal African Trypanosomosis particularly affects cattle and dramatically impairs livestock development in sub-Saharan Africa. African Zebu (AFZ) or European taurine breeds usually die of the disease in the absence of treatment, whereas West African taurine breeds (AFT), considered trypanotolerant, are able to control the pathogenic effects of trypanosomosis. Up to now, only one AFT breed, the longhorn N’Dama (NDA), has been largely studied and is considered as the reference trypanotolerant breed. Shorthorn taurine trypanotolerance has never been properly assessed and compared to NDA and AFZ breeds. Methodology/Principal Findings This study compared the trypanotolerant/susceptible phenotype of five West African local breeds that differ in their demographic history. Thirty-six individuals belonging to the longhorn taurine NDA breed, two shorthorn taurine Lagune (LAG) and Baoulé (BAO) breeds, the Zebu Fulani (ZFU) and the Borgou (BOR), an admixed breed between AFT and AFZ, were infected by Trypanosoma congolense IL1180. All the cattle were genetically characterized using dense SNP markers, and parameters linked to parasitaemia, anaemia and leukocytes were analysed using synthetic variables and mixed models. We showed that LAG, followed by NDA and BAO, displayed the best control of anaemia. ZFU showed the greatest anaemia and the BOR breed had an intermediate value, as expected from its admixed origin. Large differences in leukocyte counts were also observed, with higher leukocytosis for AFT. Nevertheless, no differences in parasitaemia were found, except a tendency to take longer to display detectable parasites in ZFU. Conclusions We demonstrated that LAG and BAO are as trypanotolerant as NDA. This study highlights the value of shorthorn taurine breeds, which display strong local adaptation to trypanosomosis. Thanks to further analyses based on comparisons of the genome or transcriptome of the breeds, these results open up the way for better knowledge of host-pathogen interactions and, furthermore, for identifying key biological pathways.


PLOS ONE | 2010

Intertwining Threshold Settings, Biological Data and Database Knowledge to Optimize the Selection of Differentially Expressed Genes from Microarray

Paul Chuchana; Philippe Holzmuller; Frédéric Vezilier; David Berthier; Isabelle Chantal; Dany Severac; Jean Loup Lemesre; Gérard Cuny; Philippe Nirdé; Bruno Bucheton

Background Many tools used to analyze microarrays in different conditions have been described. However, the integration of deregulated genes within coherent metabolic pathways is lacking. Currently no objective selection criterion based on biological functions exists to determine a threshold demonstrating that a gene is indeed differentially expressed. Methodology/Principal Findings To improve transcriptomic analysis of microarrays, we propose a new statistical approach that takes into account biological parameters. We present an iterative method to optimise the selection of differentially expressed genes in two experimental conditions. The stringency level of gene selection was associated simultaneously with the p-value of expression variation and the occurrence rate parameter associated with the percentage of donors whose transcriptomic profile is similar. Our method intertwines stringency level settings, biological data and a knowledge database to highlight molecular interactions using networks and pathways. Analysis performed during iterations helped us to select the optimal threshold required for the most pertinent selection of differentially expressed genes. Conclusions/Significance We have applied this approach to the well documented mechanism of human macrophage response to lipopolysaccharide stimulation. We thus verified that our method was able to determine with the highest degree of accuracy the best threshold for selecting genes that are truly differentially expressed.


Infection, Genetics and Evolution | 2016

Cloning, expression, molecular characterization and preliminary studies on immunomodulating properties of recombinant #Trypanosoma congolense# calreticulin

Géraldine Bossard; Pascal Grébaut; Sophie Thevenon; Martial Seveno; David Berthier; Philippe Holzmuller

Trypanosomes are bloodstream protozoan parasites, which are pathogens of veterinary and medical importance. Several mammalian species, including humans, can be infected by different species of the genus Trypanosoma (T. congolense, T. evansi, T. brucei, T. vivax) exhibiting more or less virulent and pathogenic phenotypes. A previous screening of the excreted-secreted proteins of T. congolense demonstrated an overexpression of several proteins correlated with the virulence and pathogenicity of the strain. Of these proteins, calreticulin (CRT) has shown differential expression between two T. congolense strains with opposite infectious behavior and has been selected as a target molecule based on its immune potential functions in parasitic diseases. In this study, we set out to determine the role of T. congolense calreticulin as an immune target. Immunization of mice with recombinant T. congolense calreticulin induced antibody production, which was associated with delayed parasitemia and increased survival of the challenged animal. These results strongly suggest that some excreted-secreted proteins of T. congolense are a worthwhile target candidate to interfere with the infectious process.

Collaboration


Dive into the David Berthier's collaboration.

Top Co-Authors

Avatar

Sophie Thevenon

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Isabelle Chantal

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Jean-Charles Maillard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Guiguigbaza-Kossigan Dayo

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

David Piquemal

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Géraldine Bossard

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Laurence Flori

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sophie Thévenon

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar

Bruno Bucheton

Institut de recherche pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge