David Brus
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Brus.
Science | 2010
Mikko Sipilä; Torsten Berndt; Tuukka Petäjä; David Brus; Joonas Vanhanen; Frank Stratmann; Johanna Patokoski; Roy L. Mauldin; A.-P. Hyvärinen; Heikki Lihavainen; Markku Kulmala
Little Things Do Matter Gas-phase sulfuric acid is important during atmospheric particle formation, but the mechanisms by which it forms new particles are unclear. Laboratory studies of the binary nucleation of sulfuric acid with water produce particles at rates that are many orders of magnitude too small to explain the concentration of sulfuric acid particles found in the atmosphere. Sipilä et al. (p. 1243) now show that gas-phase sulfuric acid does, in fact, undergo nucleation in the presence of water at a rate fast enough to account for the observed abundance of sulfuric acid particles in the atmosphere. These particles, which contain 1 to 2 sulfuric acid molecules each, were not detectable previously, owing to their small size, with diameters as small as 1.5 nanometers. Gas-phase sulfuric acid and water react fast enough to account for the concentration of atmospheric sulfuric acid particles. Nucleation is a fundamental step in atmospheric new-particle formation. However, laboratory experiments on nucleation have systematically failed to demonstrate sulfuric acid particle formation rates as high as those necessary to account for ambient atmospheric concentrations, and the role of sulfuric acid in atmospheric nucleation has remained a mystery. Here, we report measurements of new particles (with diameters of approximately 1.5 nanometers) observed immediately after their formation at atmospherically relevant sulfuric acid concentrations. Furthermore, we show that correlations between measured nucleation rates and sulfuric acid concentrations suggest that freshly formed particles contain one to two sulfuric acid molecules, a number consistent with assumptions that are based on atmospheric observations. Incorporation of these findings into global models should improve the understanding of the impact of secondary particle formation on climate.
Physical Review Letters | 2008
Jan Wedekind; A.-P. Hyvärinen; David Brus; David Reguera
The influence of the pressure of a chemically inert carrier gas on the nucleation rate is one of the biggest puzzles in the research of gas-liquid nucleation. Experiments can show a positive effect, a negative effect, or no effect at all. The same experiment may show both trends for the same substance depending on temperature, or for different substances at the same temperature. We show how this ambiguous effect naturally arises from the competition of two contributions: nonisothermal effects and pressure-volume work. Our model clarifies seemingly contradictory experimental results and quantifies the variation of the nucleation ability of a substance in the presence of an ambient gas. Our findings are corroborated by molecular dynamics simulations and might have important implications since nucleation in experiments, technical applications, and nature practically always occurs in the presence of an ambient gas.
Journal of Chemical Physics | 2006
David Brus; Vladimír Ždímal; Frank Stratmann
Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms and compared with the Kelvin prediction. The influence of total pressure on the observed isothermal nucleation rate was studied in another experiment, where not only temperature but also supersaturation was kept constant as the total pressure was changed. It was shown that the dependence of the nucleation rate on pressure gets stronger as pressure decreases.
Journal of Chemical Physics | 2005
David Brus; A.-P. Hyvärinen; Vladimír Ždímal; Heikki Lihavainen
Isothermal homogeneous nucleation rates of 1-butanol were measured both in a thermal diffusion cloud chamber and in a laminar flow diffusion chamber built recently at the Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Prague, Czech Republic. The chosen system 1-butanol-helium can be studied reasonably well in both devices, in the overlapping range of temperatures. The results were compared with those found in the literature and those measured by Lihavainen in a laminar flow diffusion chamber of a similar design. The same isotherms measured with the thermal diffusion cloud chamber occur at highest saturation ratios of the three devices. Isotherms measured with the two laminar flow diffusion chambers are reasonably close together; the measurements by Lihavainen occur at lowest saturation ratios. The temperature dependences observed were similar in all three devices. The molecular content of critical clusters was calculated using the nucleation theorem and compared with the Kelvin equation. Both laminar flow diffusion chambers provided very similar sizes slightly above the Kelvin equation, whereas the thermal diffusion cloud chamber suggests critical cluster sizes significantly smaller. The results found elsewhere in the literature were in reasonable agreement with our results.
Journal of Chemical Physics | 2006
A.-P. Hyvärinen; David Brus; Vladimír Ždímal; Jiří Smolík; Markku Kulmala; Yrjö Viisanen; Heikki Lihavainen
Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.
Journal of Chemical Physics | 2010
Alexandra Manka; David Brus; A.-P. Hyvärinen; Heikki Lihavainen; Judith Wölk; R. Strey
Homogeneous nucleation rates of water at temperatures between 240 and 270 K were measured in a laminar flow diffusion chamber at ambient pressure and helium as carrier gas. Being in the range of 10(2)-10(6) cm(-3) s(-1), the experimental results extend the nucleation rate data from literature consistently and fill a pre-existing gap. Using the macroscopic vapor pressure, density, and surface tension for water we calculate the nucleation rates predicted by classic nucleation theory (CNT) and by the empirical correction function of CNT by Wolk and Strey [J. Phys. Chem. B 105, 11683 (2001)]. As in the case of other systems (e.g., alcohols), CNT predicts a stronger temperature dependence than experimentally observed, whereas the agreement with the empirical correction function is good for all data sets. Furthermore, the isothermal nucleation rate curves allow us to determine the experimental critical cluster sizes by use of the nucleation theorem. A comparison with the critical cluster sizes calculated by use of the Gibbs-Thomson equation is remarkably good for small cluster sizes, for bigger ones the Gibbs-Thomson equation overestimates the cluster sizes.
Bulletin of the American Meteorological Society | 2016
Tuukka Petäjä; Ewan J. O’Connor; Dmitri Moisseev; Victoria A. Sinclair; Antti Manninen; Riikka Väänänen; Annakaisa von Lerber; Joel A. Thornton; Keri Nicoll; Walt Petersen; V. Chandrasekar; James N. Smith; Paul M. Winkler; Olaf Krüger; Hannele Hakola; Hilkka Timonen; David Brus; Tuomas Laurila; Eija Asmi; Marja-Liisa Riekkola; Lucia Mona; Paola Massoli; Ronny Engelmann; M. Komppula; Jian Wang; Chongai Kuang; Jaana Bäck; Annele Virtanen; Janne Levula; Michael Ritsche
AbstractDuring Biogenic Aerosols—Effects on Clouds and Climate (BAECC), the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program deployed the Second ARM Mobile Facility (AMF2) to Hyytiala, Finland, for an 8-month intensive measurement campaign from February to September 2014. The primary research goal is to understand the role of biogenic aerosols in cloud formation. Hyytiala is host to the Station for Measuring Ecosystem–Atmosphere Relations II (SMEAR II), one of the world’s most comprehensive surface in situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions, and an extensive suite of parameters relevant to atmosphere–biosphere interactions continuously since 1996. Combining vertical profiles from AMF2 with surface-based in situ SMEAR II observations allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. Together with the inclusion of extensi...
Journal of Chemical Physics | 2008
David Brus; A.-P. Hyvärinen; J. Wedekind; Y. Viisanen; Markku Kulmala; Vladimír Ždímal; J. Smolik; Heikki Lihavainen
The influence of total pressure and kind of carrier gas on homogeneous nucleation rates of 1-pentanol was investigated using experimental method of laminar flow diffusion chamber in this study. Two different carrier gases (helium and argon) were used in the total pressure range from 50 to 400 kPa. Nucleation temperatures ranged from 265 to 290 K for 1-pentanol-helium and from 265 to 285 K for 1-pentanol-argon. Nucleation rates varied between 10(1) and 10(6) cm(-3) s(-1) for 1-pentanol-helium and between 10(2) and 10(5) cm(-3) s(-1) for 1-pentanol-argon. Both positive and slight negative pressure effects were observed depending on temperature and carrier gas. The trend of pressure effect was found similar for both carrier gases. Error analysis on thermodynamic properties was conducted, and the lowering of surface tension due to adsorption of argon on nucleated droplets was estimated. A quantitative overview of pressure effect is provided.
Geophysical Research Letters | 2010
A.-P. Hyvärinen; David Brus; Jan Wedekind; Heikki Lihavainen
[1] Nucleation theories typically neglect the influence of the ambient pressure on the condensation of droplets from a supersaturated vapor, despite increasing experimental evidence. We have applied a recently presented model that incorporates this effect to the homogeneous nucleation rates of water at tropospheric conditions. We measured experimental pressure dependent nucleation rates of water in helium at low to intermediate pressures (70-200 kPa) and at temperatures from 240-270 K with the laminar flow diffusion chamber. The observed pressure effect shows a clear positive effect (increasing nucleation rate with increasing pressure) at 270 K and a weaker effect with lower temperatures, consistent with the theory. The experimental pressure effect was more pronounced than predicted by theory. The same principle of the pressure effect should also hold for heterogeneous nucleation of water, which implies that water vapor removal by droplet nucleation of water may be suppressed at tropospheric conditions.
Journal of Chemical Physics | 2014
Hanna Görke; Kimmo Neitola; A.-P. Hyvärinen; Heikki Lihavainen; Judith Wölk; R. Strey; David Brus
Nucleation rates of n-propanol were investigated in the Laminar Flow Diffusion Chamber. Nucleation temperatures between 270 and 300 K and rates between 10(0) and 10(6) cm(-3) s(-1) were achieved. Since earlier measurements of n-butanol and n‑pentanol suggest a dependence of nucleation rates on carrier gas pressure, similar conditions were adjusted for these measurements. The obtained data fit well to results available from literature. A small positive pressure effect was found which strengthen the assumption that this effect is attributed to the carbon chain length of the n-alcohol [D. Brus, A. P. Hyvärinen, J. Wedekind, Y. Viisanen, M. Kulmala, V. Ždímal, J. Smolík, and H. Lihavainen, J. Chem. Phys. 128, 134312 (2008)] and might be less intensive for substances in the homologous series with higher equilibrium vapor pressure. A comparison with the theoretical approach by Wedekind et al. [Phys. Rev. Lett. 101, 12 (2008)] shows that the effect goes in the same direction but that the intensity is much stronger in experiments than in theory.