David Brusi
Gaia Online
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Brusi.
Science of The Total Environment | 2016
Anna Menció; Josep Mas-Pla; Neus Otero; Oriol Regàs; Mercè Boy-Roura; Roger Puig; Joan Bach; Cristina Domènech; Manel Zamorano; David Brusi; Albert Folch
Contamination from agricultural sources and, in particular, nitrate pollution, is one of the main concerns in groundwater management. However, this type of pollution entails the entrance of other substances into the aquifer, as well as it may promote other processes. In this study, we deal with hydrochemical and isotopic analysis of groundwater samples from four distinct zones in Catalonia (NE Spain), which include 5 different aquifer types, to investigate the influence of fertilization on the overall hydrochemical composition of groundwater. Results indicate that intense fertilizer application, causing high nitrate pollution in aquifers, also homogenize the contents of the major dissolved ions (i.e.; Cl(-), SO4(2-), Ca(2+), Na(+), K(+), and Mg(2+)). Thus, when groundwater in igneous and sedimentary aquifers is compared, significant differences are observed under natural conditions for Cl(-), Na(+) and Ca(2+) (with p-values ranging from <0.001 to 0.038), and when high nitrate concentrations occur, these differences are reduced (most p-values ranged between 0.054 and 0.978). Moreover, positive linear relationships between nitrate and some ions are found indicating the magnitude of the fertilization impact on groundwater hydrochemistry (with R(2) values of 0.490, 0.609 and 0.470, for SO4(2-), Ca(2+) and Cl(-), respectively). Nevertheless, the increasing concentration of specific ions is not only attributed to agricultural pollution, but to their enhancing effect upon the biogeochemical processes that control water-rock interactions. Such results raise awareness that these processes should be evaluated in advance in order to assess an adequate groundwater resources management.
Science of The Total Environment | 2012
Josep Mas-Pla; Eva Font; Oihane Astui; Anna Menció; Agustí Rodríguez-Florit; Albert Folch; David Brusi; Alfredo Pérez-Paricio
Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins could be self-sufficient units so long as the response of the main hydrological components to external forces that produce water scarcity, as climate change or human pressures, is appropriately considered in water resource planning.
Science of The Total Environment | 2018
Mercè Boy-Roura; Josep Mas-Pla; M. Petrovic; M. Gros; D. Soler; David Brusi; Anna Menció
Antibiotics are an increasing focus of interest due to their high detection frequency in the environment. However, their presence in water bodies is not regulated by environmental policies. This field study investigates, for the first time, the occurrence, behavior and fate of a selection of 53 antibiotics, including up to 10 chemical groups, in an alluvial aquifer originated from manure application in an agricultural region using hydrogeological, hydrochemical and isotopic approaches. Up to 11 antibiotics were found in groundwater corresponding to 4 different chemical groups: fluoroquinolones, macrolides, quinolones and sulfonamides. In surface water, only 5 different antibiotics from 2 chemical groups: fluoroquinolones and sulfonamides, were quantified. The most frequent antibiotics were sulfamethoxazole and ciprofloxacin. Concentrations of antibiotics were in the order of ng/L, with maximum concentrations of 300ng/L in groundwater. Hydrochemistry and isotopic data and geostatistics confirmed the spatial trend observed for nitrates, where nitrate concentrations tend to be higher in the margin areas of the study area, and lower concentrations are found nearby the river. On the other hand, no clear continuous spatial concentration trend of antibiotics was observed in the aquifer, supported by the short spatial correlation found in the variograms. This indicates that the physical-chemical properties and processes of each antibiotic (mainly, sorption and degradation), and other environmental issues, such as a patchy diffuse input and the manure antibiotic content itself, play an important role in their spatial distribution in groundwater. A discussion on the estimation of the antibiotic sorption parameter reveals the difficulties of describing such phenomena. Furthermore, retardation factors will extend over several orders of magnitude, which highly affects the movement of individual antibiotics within the aquifer. To summarize, this study points out the difficulties associated with antibiotic research in groundwater in order to define water resources quality management strategies and environmental regulations.
Water Air and Soil Pollution | 2016
Josep Mas-Pla; Anna Menció; Joan Bach; Manel Zamorano; David Soler; David Brusi
Trace elements appear in natural waters as a result of rock weathering and human activities. Their occurrence is governed by a complex set of geochemical conditions which finally may induce trace element concentrations above health standards. In regional, large-scale aquifers, their presence is representative of the hydrogeological setting of the overall flow path from the recharge zone to the sampling well. In this study, we analyze hydrochemical, including major components and trace elements (Al, As, B, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Sb, Sn, Sr, Pb, Zn), and stable isotopic data from exploitation wells in the Empordà basin (NE Spain). Our goal is to explore the hydrogeological meaning of trace elements as a means to contribute to the understanding of the regional flow dynamics as an initial step to face trace element pollution events. Groundwater data is hence described in the context of each aquifer relating the major hydrochemical facies with their accompanying trace elements. Results point out some expected geochemical relationships as well as some trace element associations that cannot be envisaged from the usual incomplete lithological information of the aquifer. Multivariate statistical analysis, as PCA, provides complementary information about geochemical processes (loadings) and regional occurrence (scores). Such statistical information can be taken as indicative of potential health hazard associated to trace element in groundwater. From a management perspective, such analysis points out which elements should a priori be considered for analysis according to the geological formation that holds the water supply well.
Hydrological Processes | 2013
Josep Mas-Pla; Agustí Rodríguez-Florit; Manel Zamorano; Carles Roqué; Anna Menció; David Brusi
Scientia gerundensis | 2002
Rogelio Linares; Alejandro Lomoschitz; Lluís Pallí; David Brusi; Aitor Quintana
Archive | 1988
Joan Bach i Plaza; David Brusi; Montse Domingo Morato; Antoni Obrador Tuduri
Archive | 1988
Joan Bach i Plaza; David Brusi
Houille Blanche-revue Internationale De L Eau | 2018
Josep Mas-Pla; Mercè Boy-Roura; M Petrovic; M Villagrasa; I Lekunberri; Cm Borrego; Anna Menció; David Brusi; R Marcè
Energy Procedia | 2018
Marco Agnelli; Fidel Grandia; David Soler; Alvaro Sáinz-García; David Brusi; Manel Zamorano; Anna Menció