Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David C. A. Neville is active.

Publication


Featured researches published by David C. A. Neville.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives

Davor Pavlović; David C. A. Neville; Olivier Argaud; Baruch S. Blumberg; Raymond A. Dwek; Wolfgang B. Fischer; Nicole Zitzmann

We show that hepatitis C virus (HCV) p7 protein forms ion channels in black lipid membranes. HCV p7 ion channels are inhibited by long-alkyl-chain iminosugar derivatives, which have antiviral activity against the HCV surrogate bovine viral diarrhea virus. HCV p7 presents a potential target for antiviral therapy.


Nature Genetics | 2004

Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase

Michael A. Simpson; Harold E. Cross; Christos Proukakis; David A. Priestman; David C. A. Neville; Gabriele Reinkensmeier; Heng Wang; Max Wiznitzer; Kay Gurtz; Argyro Verganelaki; Anna Pryde; Michael A. Patton; Raymond A. Dwek; Terry D. Butters; Frances M. Platt; Andrew H. Crosby

We identified an autosomal recessive infantile-onset symptomatic epilepsy syndrome associated with developmental stagnation and blindness. Assuming a founder effect in a large Old Order Amish pedigree, we carried out a genome-wide screen for linkage and identified a single region of homozygosity on chromosome 2p12–p11.2 spanning 5.1 cM (maximum lod score of 6.84). We sequenced genes in the region and identified a nonsense mutation in SIAT9, which is predicted to result in the premature termination of the GM3 synthase enzyme (also called lactosylceramide α-2,3 sialyltransferase). GM3 synthase is a member of the sialyltransferase family and catalyzes the initial step in the biosynthesis of most complex gangliosides from lactosylceramide. Biochemical analysis of plasma glycosphingolipids confirmed that affected individuals lack GM3 synthase activity, as marked by a complete lack of GM3 ganglioside and its biosynthetic derivatives and an increase in lactosylceramide and its alternative derivatives. Although the relationship between defects in ganglioside catabolism and a range of lysosomal storage diseases is well documented, this is the first report, to our knowledge, of a disruption of ganglioside biosynthesis associated with human disease.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals

Anneliese O. Speak; Mariolina Salio; David C. A. Neville; Josette Fontaine; David A. Priestman; Nick Platt; Tanya Heare; Terry D. Butters; Raymond A. Dwek; François Trottein; Mark A. Exley; Vincenzo Cerundolo; Frances M. Platt

Development of invariant natural killer T (iNKT) cells requires the presentation of lipid ligand(s) by CD1d molecules in the thymus. The glycosphingolipid (GSL) isoglobotrihexosylceramide (iGb3) has been proposed as the natural iNKT cell-selecting ligand in the thymus and to be involved in peripheral activation of iNKT cells by dendritic cells (DCs). However, there is no direct biochemical evidence for the presence of iGb3 in mouse or human thymus or DCs. Using a highly sensitive HPLC assay, the only tissue where iGb3 could be detected in mouse was the dorsal root ganglion (DRG). iGb3 was not detected in other mouse or any human tissues analyzed, including thymus and DCs. Even in mutant mice that store isoglobo-series GSLs in the DRG, we were still unable to detect these GSLs in the thymus. iGb3 is therefore unlikely to be a physiologically relevant iNKT cell-selecting ligand in mouse and humans. A detailed study is now warranted to better understand the nature of iNKT cell-selecting ligand(s) in vivo.


Journal of Biological Chemistry | 2004

Accumulation of glycosphingolipids in Niemann-Pick C disease disrupts endosomal transport.

Danielle Taylor te Vruchte; Emyr Lloyd-Evans; Robert Jan Veldman; David C. A. Neville; Raymond A. Dwek; Frances Mary Platt; Wim J. van Blitterswijk; Daniel J. Sillence

Glycosphingolipids are endocytosed and targeted to the Golgi apparatus but are mistargeted to lysosomes in sphingolipid storage disorders. Substrate reduction therapy utilizes imino sugars to inhibit glucosylceramide synthase and potentially abrogate the effects of storage. Niemann-Pick type C (NPC) disease is a disorder of intracellular transport where glycosphingolipids (GSLs) and cholesterol accumulate in endosomal compartments. The mechanisms of altered intracellular trafficking are not known but may involve the mistargeting and disrupted function of proteins associated with GSL membrane microdomains. Membrane microdomains were isolated by Triton X-100 and sucrose density gradient ultracentrifugation. High pressure liquid chromatography and mass spectrometric analysis of NPC1–/– mouse brain revealed large increases in GSL. Sphingosine was also found to be a component of membrane microdomains, and in NPC liver and spleen, large increases in cholesterol and sphingosine were found. GSL and cholesterol levels were increased in mutant NPC1-null Chinese hamster ovary cells as well as U18666A and progesterone induced NPC cell culture models. However, inhibition of GSL synthesis in NPC cells with N-butyldeoxygalactonojirimycin led to marked decreases in GSL but only small decreases in cholesterol levels. Both annexin 2 and 6, membrane-associated proteins that are important in endocytic trafficking, show distorted distributions in NPC cells. Altered BODIPY lactosylceramide targeting, decreased endocytic uptake of a fluid phase marker, and mistargeting of annexin 2 (phenotypes associated with NPC) are reversed by inhibition of GSL synthesis. It is suggested that accumulating GSL is part of a mislocalized membrane microdomain and is responsible for the deficit in endocytic trafficking found in NPC disease.


Annals of Neurology | 2004

NSAIDs increase survival in the Sandhoff disease mouse: Synergy with N‐butyldeoxynojirimycin

Mylvaganam Jeyakumar; David A. Smith; Ian M. Williams; Mario Cortina Borja; David C. A. Neville; Terry D. Butters; Raymond A. Dwek; Frances M. Platt

The GM2 gangliosidoses are caused by incomplete catabolism of GM2 ganglioside in the lysosome, leading to progressive storage and a neurodegenerative clinical course. An inflammatory response (microglial activation, macrophage infiltration, oxidative damage) has been found to be a consequence of GM2 storage in the brain, although it remains unclear whether this contributes to pathogenesis or disease progression. In this study, we treated Sandhoff disease mice with nonsteroidal antiinflammatory drugs (indomethacin, aspirin, and ibuprofen) and antioxidants (L‐ascorbic acid and α‐tochopherol acetate). The treated mice lived significantly longer than untreated littermates (12–23%, p < 0.0001) and showed a slower rate of disease progression (p < 0.001). When aspirin treatment was combined with substrate reduction therapy, synergy resulted (11%, p < 0.05) with a maximum improvement of 73% in survival (p < 0.00001). This study demonstrates that inflammation contributes to disease progression and identifies antiinflammatory and antioxidant therapies as a potential adjunctive approach to slow the clinical course of this and related disorders. Ann Neurol 2004;56:642–649


Biochemical Journal | 2008

Glucosylated free oligosaccharides are biomarkers of endoplasmic-reticulum α-glucosidase inhibition

Dominic S. Alonzi; David C. A. Neville; Robin H. Lachmann; Raymond A. Dwek; Terry D. Butters

The inhibition of ER (endoplasmic reticulum) alpha-glucosidases I and II by imino sugars, including NB-DNJ (N-butyl-deoxynojirimycin), causes the retention of glucose residues on N-linked oligosaccharides. Therefore, normal glycoprotein trafficking and processing through the glycosylation pathway is abrogated and glycoproteins are directed to undergo ERAD (ER-associated degradation), a consequence of which is the production of cytosolic FOS (free oligosaccharides). Following treatment with NB-DNJ, FOS were extracted from cells, murine tissues and human plasma and urine. Improved protocols for analysis were developed using ion-exchange chromatography followed by fluorescent labelling with 2-AA (2-aminobenzoic acid) and purification by lectin-affinity chromatography. Separation of 2-AA-labelled FOS by HPLC provided a rapid and sensitive method that enabled the detection of all FOS species resulting from the degradation of glycoproteins exported from the ER. The generation of oligosaccharides derived from glucosylated protein degradation was rapid, reversible, and time- and inhibitor concentration-dependent in cultured cells and in vivo. Long-term inhibition in cultured cells and in vivo indicated a slow rate of clearance of glucosylated FOS. In mouse and human urine, glucosylated FOS were detected as a result of transrenal excretion and provide unique and quantifiable biomarkers of ER-glucosidase inhibition.


Journal of Proteome Research | 2009

Development of a single column method for the separation of lipid- and protein-derived oligosaccharides.

David C. A. Neville; Raymond A. Dwek; Terry D. Butters

Fluorescent labeling of oligosaccharides with anthranilic acid (2-aminobenzoic acid; 2AA), or 2-aminobenzamide (2AB) permits the rapid, sensitive analysis of structures present in cells and tissues. Normal-phase (NP)/hydrophilic interaction chromatography (HILIC) is commonly used to separate fluorophore-derivatized oligosaccharides. Column elution is expressed as glucose units (GU) following calculation of relative retention when compared to an external glucose oligomer standard. However, there is significant overlap between sialylated and neutral oligosaccharides. Normal-phase anion-exchange (NP-AE) HPLC can separate differing classes of oligosaccharides according to the number of charged residues, but relative retention times in GU cannot be calculated across the entire gradient. We have overcome this difficulty by use of a Dionex AS11 column that combines both hydrophilic interaction and anion-exchange chromatographies, termed HIAX, which enables the calculation of GU values for oligosaccharides that carry sialylated or other negatively charged groups. The same method may also be employed for 2AB and other fluorophore-labeled oligosaccharides. Additionally, the same HPLC eluants are used for the differing HPLC columns. Therefore, analysis of HILIC- or HIAX-separated fluorophore-labeled oligosaccharides can be performed using a single HPLC system with a single set of eluents following a simple column change.


Biochemical Journal | 2004

Cellular effects of deoxynojirimycin analogues: uptake, retention and inhibition of glycosphingolipid biosynthesis

Howard R. Mellor; David C. A. Neville; David J. Harvey; Frances M. Platt; Raymond A. Dwek; Terry D. Butters

Deoxynojirimycin (DNJ) analogues are inhibitors of ceramide glucosyltransferase (CGT), which catalyses the first step in the glucosphingolipid (GSL) biosynthetic pathway. We have synthesized a series of DNJ analogues to study the contribution of N-alk(en)yl side chains (C4, C9 or C18) to the behaviour of these analogues in cultured HL60 cells. When cells were treated for 16 h at non-cytotoxic concentrations of inhibitor, a 40-50% decrease in GSL levels was measured by HPLC analysis of GSL-derived oligosaccharides following ceramide glycanase digestion of GSL and 2-aminobenzamide labelling of the released oligosaccharides. Using a novel technique for short-term [14C]galactose labelling of cellular GSL, we used compound inhibition of GSL biosynthesis as a marker for compound uptake into cells. Surprisingly, the uptake of all three of the DNJ analogues was extremely rapid and was not dependent upon the length of the N-alk(en)yl moiety. Compound uptake occurred in less than 1 min, as shown by the complete inhibition of GSL labelling in cells treated with all the DNJ analogues. Greatly increased cellular retention of N-cis-13-octadecenyl-DNJ was observed relative to the shorter-chain compounds, N-butyl-DNJ and N-nonyl-DNJ, as indicated by complete inhibition of CGT 24 h after removal of inhibitor from the culture medium. The present study further characterizes the properties of N-alk(en)ylated DNJs, and demonstrates that increasing the length of the side chain is a simple way of improving imino sugar retention and therefore inhibitory efficacy for CGT in cultured cells.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Activation state and intracellular trafficking contribute to the repertoire of endogenous glycosphingolipids presented by CD1d

Karen Muindi; Manuela Cernadas; Gerald F. Watts; Louise Royle; David C. A. Neville; Raymond A. Dwek; Gurdyal S. Besra; Pauline M. Rudd; Terry D. Butters; Michael B. Brenner

Myeloid antigen-presenting cells (APC) express CD1d molecules that present exogenous and endogenous lipid antigens that activate CD1d-restricted T cells, natural killer T (NKT) cells. NKT cell activation has been shown to mediate the potent downstream activation of other immune cells through cell–cell interactions and rapid, prolific cytokine production. Foreign antigens are not required for NKT cell activation. The endogenous lipids bound to CD1d are sufficient for activation of NKT cells in the setting of Toll-like receptor-induced cytokines. The most potent NKT cell antigens identified are glycosphingolipids (GSL). The GSL repertoire of endogenous ligands bound to CD1d molecules that are expressed in myeloid APC at steady state and in the setting of activation has not been delineated. This report identifies the range of GSL bound to soluble murine CD1d (mCD1d) molecules that sample the endoplasmic reticulum/secretory routes and cell surface-cleaved mCD1d that also samples the endocytic system. Specific GSL species are preferentially bound by mCD1d and do not solely reflect cellular GSL. GM1a and GD1a are prominent CD1d ligands for molecules following both the ER/secretory and lysosomal trafficking routes, whereas GM2 was eluted from soluble CD1d but not lysosomal trafficking CD1d. Further, after LPS activation, the quantities of soluble CD1d-bound GM3 and GM1a markedly increased. A unique α-galactose-terminating GSL was also found to be preferentially bound to mCD1d at steady state, and it increased with APC activation. Together, these studies identify the range of GSL presented by CD1d and how presentation varies based on CD1d intracellular trafficking and microbial activation.


Biochemical Journal | 2004

Cellular effects of deoxynojirimycin analogues: inhibition of N-linked oligosaccharide processing and generation of free glucosylated oligosaccharides

Howard R. Mellor; David C. A. Neville; David J. Harvey; Frances M. Platt; Raymond A. Dwek; Terry D. Butters

In the accompanying paper [Mellor, Neville, Harvey, Platt, Dwek and Butters (2004) Biochem. J. 381, 861-866] we treated HL60 cells with N-alk(en)yl-deoxynojirimycin (DNJ) compounds to inhibit glucosphingolipid (GSL) biosynthesis and identified a number of non-GSL-derived, small, free oligosaccharides (FOS) most likely produced due to inhibition of the oligosaccharide-processing enzymes a-glucosidases I and II. When HL60 cells were treated with concentrations of N-alk(en)ylated DNJ analogues that inhibited GSL biosynthesis completely, N-butyl- and N-nonyl-DNJ inhibited endoplasmic reticulum (ER) glucosidases I and II, but octadecyl-DNJ did not, probably due to the lack of ER lumen access for this novel, long-chain derivative. Glucosidase inhibition resulted in the appearance of free Glc1-3Man structures, which is evidence of Golgi glycoprotein endomannosidase processing of oligosaccharides with retained glucose residues. Additional large FOS was also detected in cells following a 16 h treatment with N-butyl- and N-nonyl-DNJ. When these FOS structures (>30, including >20 species not present in control cells) were characterized by enzyme digests and MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS, all were found to be polymannose-type oligosaccharides, of which the majority were glucosylated and had only one reducing terminal GlcNAc (N-acetylglucosamine) residue (FOS-GlcNAc1), demonstrating a cytosolic location. These results support the proposal that the increase in glucosylated FOS results from enzyme-mediated cytosolic cleavage of oligosaccharides from glycoproteins exported from the ER because of misfolding or excessive retention. Importantly, the present study characterizes the cellular properties of DNJs further and demonstrates that side-chain modifications allow selective inhibition of protein and lipid glycosylation pathways. This represents the most detailed characterization of the FOS structures arising from ER a-glucosidase inhibition to date.

Collaboration


Dive into the David C. A. Neville's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louise Royle

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge