Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David C. Cannatella is active.

Publication


Featured researches published by David C. Cannatella.


PLOS Biology | 2009

Amazonian Amphibian Diversity Is Primarily Derived from Late Miocene Andean Lineages

Juan C. Santos; Luis A. Coloma; Kyle Summers; Janalee P. Caldwell; Richard H. Ree; David C. Cannatella

The Neotropics contains half of remaining rainforests and Earths largest reservoir of amphibian biodiversity. However, determinants of Neotropical biodiversity (i.e., vicariance, dispersals, extinctions, and radiations) earlier than the Quaternary are largely unstudied. Using a novel method of ancestral area reconstruction and relaxed Bayesian clock analyses, we reconstructed the biogeography of the poison frog clade (Dendrobatidae). We rejected an Amazonian center-of-origin in favor of a complex connectivity model expanding over the Neotropics. We inferred 14 dispersals into and 18 out of Amazonia to adjacent regions; the Andes were the major source of dispersals into Amazonia. We found three episodes of lineage dispersal with two interleaved periods of vicariant events between South and Central America. During the late Miocene, Amazonian, and Central American-Chocoan lineages significantly increased their diversity compared to the Andean and Guianan-Venezuelan-Brazilian Shield counterparts. Significant percentage of dendrobatid diversity in Amazonia and Chocó resulted from repeated immigrations, with radiations at <10.0 million years ago (MYA), rather than in situ diversification. In contrast, the Andes, Venezuelan Highlands, and Guiana Shield have undergone extended in situ diversification at near constant rate since the Oligocene. The effects of Miocene paleogeographic events on Neotropical diversification dynamics provided the framework under which Quaternary patterns of endemism evolved.


Systematic Biology | 2006

Phylogeny and Biogeography of a Cosmopolitan Frog Radiation: Late Cretaceous Diversification Resulted in Continent-Scale Endemism in the Family Ranidae

Franky Bossuyt; Rafe M. Brown; David M. Hillis; David C. Cannatella; Michel C. Milinkovitch

Ranidae is a large anuran group with a nearly cosmopolitan distribution. We investigated the phylogenetic relationships and early biogeographic history of ranid frogs, using 104 representatives of all subfamilies and families, sampled from throughout their distribution. Analyses of approximately 1570 bp of nuclear gene fragments (Rag-1, rhod, Tyr) and approximately 2100 bp of the mitochondrial genome (12S rRNA, tRNAVAL, 16S rRNA) indicate that the monophyly of several taxa can be rejected with high confidence. Our tree is characterized by a clear historical association of each major clade with one Gondwanan plate. This prevalence of continent-scale endemism suggests that plate tectonics has played a major role in the distribution of ranid frogs. We performed dispersal-vicariance analyses, as well as analyses constrained by paleogeographic data, to estimate ancestral distributions during early ranid diversification. Additionally, we used molecular clock analyses to evaluate whether these scenarios fit the temporal framework of continental breakup. Our analyses suggest that a scenario in which the ancestors of several clades (Rhacophorinae, Dicroglossinae, Raninae) reached Eurasia via the Indian subcontinent, and the ancestor of Ceratobatrachinae entered via the Australia-New Guinea plate, best fits the paleogeographic models and requires the fewest number of dispersal/vicariance events. However, several alternatives, in which part of the ranid fauna colonized Laurasia from Africa, are not significantly worse. Most importantly, all hypotheses make clear predictions as to where to expect key fossils and where to sample other living ranids, and thus constitute a strong basis for further research.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Multiple, recurring origins of aposematism and diet specialization in poison frogs

Juan C. Santos; Luis A. Coloma; David C. Cannatella

Aposematism is the association, in a prey organism, of the presence of a warning signal with unprofitability to predators. The origin of aposematism is puzzling, because of its predicted low probability of establishment in a population due to the preys increased conspicuousness. Aposematism is a widespread trait in invertebrate taxa, but, in vertebrates, it is mostly evident in amphibians, reptiles, and fishes. Poison frogs (Dendrobatidae) are one of the most well known examples of the co-occurrence of warning coloration and toxicity. This monophyletic group of mostly diurnal leaf-litter Neotropical anurans has both toxic/colorful and palatable/cryptic species. Previous studies suggested a single origin of toxicity and warning coloration, dividing the family in two discrete groups of primitively cryptic and more derived aposematic frogs. Recent molecular phylogenetic analyses using mostly aposematic taxa supported this conclusion and proposed a single tandem origin of toxicity and conspicuous warning coloration. By using expanded taxon and character sampling, we reexamined the phylogenetic correlation between the origins of toxicity and warning coloration. At least four or five independent origins of aposematism have occurred within poison frogs; by using simulations, we rejected hypotheses of one, two, or three origins of aposematism (P < 0.002). We also found that diet specialization is linked with the evolution of aposematism. Specialization on prey, such as ants and termites, may have evolved independently at least two times.


Systematic Biology | 1998

Phylogeny of Frogs of the Physalaemus Pustulosus Species Group, With an Examination of Data Incongruence

David C. Cannatella; David M. Hillis; Paul T. Chippindale; Lee A. Weigt; A. Stanley Rand; Michael J. Ryan

Characters derived from advertisement calls, morphology, allozymes, and the sequences of the small subunit of the mitochondrial ribosomal gene (12S) and the cytochrome oxidase I (COI) mitochondrial gene were used to estimate the phylogeny of frogs of the Physalaemus pustulosus group (Leptodactylidae). The combinability of these data partitions was assessed in several ways: measures of phylogenetic signal, character support for trees, congruence of tree topologies, compatibility of data partitions with suboptimal trees, and homogeneity of data partitions. Combined parsimony analysis of all data equally weighted yielded the same tree as the 12S partition analyzed under parsimony and maximum likelihood. The COI, allozyme, and morphology partitions were generally congruent and compatible with the tree derived from combined data. The call data were significantly different from all other partitions, whether considered in terms of tree topology alone, partition homogeneity, or compatibility of data with trees derived from other partitions. The lack of effect of the call data on the topology of the combined tree is probably due to the small number of call characters. The general incongruence of the call data with other data partitions is consistent with the idea that the advertisement calls of this group of frogs are under strong sexual selection.


Evolution | 2008

Patterns of Endemism and Species Richness in Malagasy Cophyline Frogs Support a Key Role of Mountainous Areas for Speciation

Katharina C. Wollenberg; David R. Vieites; Arie van der Meijden; Frank Glaw; David C. Cannatella; Miguel Vences

Abstract Cophyline narrow-mouthed frogs (Anura: Microhylidae) are a diverse endemic radiation of Madagascar. Cophylines contain a high proportion of range restricted species and constitute a good model system to understand patterns of evolutionary diversification in tropical ecosystems. We combine spatial and phylogenetic analyses for a near-complete taxon sample to test competing explanations for patterns of species richness (SR) and endemism. Our reconstruction of the phylogeny of cophylines indicates the presence of 22 new species and several instances of nonmonophyly. We found a strong historical signal in current cophyline ranges indicating a high degree of spatial niche conservatism in clade diversification, with clades occurring in the North of Madagascar constituting the most derived in the phylogeny. We identified six positively correlated centers of SR and endemism that can neither be explained by stochastic models such as elevational or latitudinal mid-domain effect, nor by low-elevation river catchments. Instead, the locations of these centers in areas spanning a high altitudinal range in combination with specific climatic parameters support a key role of mountainous areas for speciation of these anurans, although we cannot exclude an influence of habitat loss due to human impact. High conservation priority is ascribed to these areas.


Molecular Biology and Evolution | 2013

Efficient Sequencing of Anuran mtDNAs and a Mitogenomic Exploration of the Phylogeny and Evolution of Frogs

Peng Zhang; Dan Liang; Rong-Li Mao; David M. Hillis; David B. Wake; David C. Cannatella

Anura (frogs and toads) constitute over 88% of living amphibian diversity but many important questions about their phylogeny and evolution remain unresolved. For this study, we developed an efficient method for sequencing anuran mitochondrial DNAs (mtDNAs) by amplifying the mitochondrial genome in 12 overlapping fragments using frog-specific universal primer sets. Based on this method, we generated 47 nearly complete, new anuran mitochondrial genomes and discovered nine novel gene arrangements. By combining the new data and published anuran mitochondrial genomes, we assembled a large mitogenomic data set (11,007 nt) including 90 frog species, representing 39 of 53 recognized anuran families, to investigate their phylogenetic relationships and evolutionary history. The resulting tree strongly supported a paraphyletic arrangement of archaeobatrachian (=nonneobatrachian) frogs, with Leiopelmatoidea branching first, followed by Discoglossoidea, Pipoidea, and Pelobatoidea. Within Neobatrachia, the South African Heleophrynidae is the sister-taxon to all other neobatrachian frogs and the Seychelles-endemic Sooglossidae is recovered as the sister-taxon to Ranoidea. These phylogenetic relationships agree with many nuclear gene studies. The chronogram derived from two Bayesian relaxed clock methods (MultiDivTime and BEAST) suggests that modern frogs (Anura) originated in the early Triassic about 244 Ma and the appearance of Neobatrachia took place in the late Jurassic about 163 Ma. The initial diversifications of two species-rich superfamilies Hyloidea and Ranoidea commenced 110 and 133 Ma, respectively. These times are older than some other estimates by approximately 30-40 My. Compared with nuclear data, mtDNA produces compatible time estimates for deep nodes (>150 Ma), but apparently older estimates for more shallow nodes. Our study shows that, although it evolves relatively rapidly and behaves much as a single locus, mtDNA performs well for both phylogenetic and divergence time inferences and will provide important reference hypotheses for the phylogeny and evolution of frogs.


Evolution | 2003

MONKEYS AND TOADS DEFINE AREAS OF ENDEMISM ON SULAWESI

Ben J. Evans; Jatna Supriatna; Noviar Andayani; Mohammed Iqbal Setiadi; David C. Cannatella; Don J. Melnick

Ecological or geological phenomena can impose limits on geographic diversification that cause biogeographical patterns of distantly related but sympatrically occurring taxa to be similar. Concordant patterns of diversity facilitate conservation management because strategic designation of protected areas can capture complementary rather than redundant components of variation. Here we demonstrate that on the biodiverse Indonesian island of Sulawesi, seemingly idiosyncratic distributions of diversity in endemic monkeys (Macaca species) and toads (Bufo celebensis) are actually virtually identical on a fine geographic scale. It appears that range fragmentation has generated seven multi-taxon areas of genetic endemism, each of which should be targeted for conservation. Joint consideration of molecular phylogeography, morphology, and demography helps resolve apparent contradictions in paraphyletic macaque mitochondrial DNA and in undifferentiated toad morphology, and facilitates an understanding of biogeography and conservation genetics of Sulawesi fauna.


Evolution | 2004

THE HISTORY OF A NEARCTIC COLONIZATION: MOLECULAR PHYLOGENETICS AND BIOGEOGRAPHY OF THE NEARCTIC TOADS (BUFO)

Gregory B. Pauly; David M. Hillis; David C. Cannatella

Abstract Previous hypotheses of phylogenetic relationships among Nearctic toads (Bufonidae) and their congeners suggest contradictory biogeographic histories. These hypotheses argue that the Nearctic Bufo are: (1) a polyphyletic assemblage resulting from multiple colonizations from Africa; (2) a paraphyletic assemblage resulting from a single colonization event from South America with subsequent dispersal into Eurasia; or (3) a monophyletic group derived from the Neotropics. We obtained approximately 2.5 kb of mitochondrial DNA sequence data for the 12S, 16S, and intervening valine tRNA gene from 82 individuals representing 56 species and used parametric bootstrapping to test hypotheses of the biogeographic history of the Nearctic Bufo. We find that the Nearctic species of Bufo are monophyletic and nested within a large clade of New World Bufo to the exclusion of Eurasian and African taxa. This suggests that Nearctic Bufo result from a single colonization from the Neotropics. More generally, we demonstrate the utility of parametric bootstrapping for testing alternative biogeographic hypotheses. Through parametric bootstrapping, we refute several previously published biogeographic hypotheses regarding Bufo. These previous studies may have been influenced by homoplasy in osteological characters. Given the Neotropical origin for Nearctic Bufo, we examine current distributional patterns to assess whether the Nearctic‐Neotropical boundary is a broad transition zone or a narrow boundary. We also survey fossil and paleogeographic evidence to examine potential Tertiary and Cretaceous dispersal routes, including the Paleocene Isthmian Link, the Antillean and Aves Ridges, and the current Central American Land Bridge, that may have allowed colonization of the Nearctic.


Evolution | 2007

Geological and climatic forces driving speciation in the continentally distributed trilling chorus frogs (Pseudacris)

Emily Moriarty Lemmon; Alan R. Lemmon; David C. Cannatella

Abstract Tertiary geological events and Quaternary climatic fluctuations have been proposed as important factors of speciation in the North American flora and fauna. Few studies, however, have rigorously tested hypotheses regarding the specific factors driving divergence of taxa. Here, we test explicit speciation hypotheses by correlating geologic events with divergence times among species in the continentally distributed trilling chorus frogs (Pseudacris). In particular, we ask whether marine inundation of the Mississippi Embayment, uplift of the Appalachian Mountains, or modification of the ancient Teays-Mahomet River system contributed to speciation. To examine the plausibility of ancient rivers causing divergence, we tested whether modern river systems inhibit gene flow. Additionally, we compared the effects of Quaternary climatic factors (glaciation and aridification) on levels of genetic variation. Divergence time estimates using penalized likelihood and coalescent approaches indicate that the major lineages of chorus frogs diversified during the Tertiary, and also exclude Quaternary climate change as a factor in speciation of chorus frogs. We show the first evidence that inundation of the Mississippi Embayment contributed to speciation. We reject the hypotheses that Cenozoic uplift of the Appalachians and that diversion of the Teays-Mahomet River contributed to speciation in this clade. We find that by reducing gene flow, rivers have the potential to cause divergence of lineages. Finally, we demonstrate that populations in areas affected by Quaternary glaciation and aridification have reduced levels of genetic variation compared to those from more equable regions, suggesting recent colonization.


The American Naturalist | 2005

Evolution of Dietary Specialization and Chemical Defense in Poison Frogs (Dendrobatidae): A Comparative Analysis

Catherine R. Darst; Pablo A. Menéndez‐Guerrero; Luis A. Coloma; David C. Cannatella

Defensive mechanisms, including noxious or toxic substances, are favored by predation‐driven natural selection. The acquisition of noxious/toxic substances can be either endogenous, in which the substances are produced by the organism, or exogenous, in which the substances are produced by another organism and are sequestered. Evidence indicates that the defensive skin alkaloids of Neotropical poison frogs (Dendrobatidae) have an exogenous source: a diet of ants and other small alkaloid‐containing arthropods, which we term the diet‐toxicity hypothesis. A critical prediction of the diet‐toxicity hypothesis is that independent origins of dietary specialization will be found to be correlated with independent origins of skin alkaloids. We tested this prediction in an integrated framework using comparative methods with new and published data on feeding ecology and chemical defense for 15 species of dendrobatids in five genera. We found a significant correlation between alkaloid profiles and degree of dietary specialization. This reveals a recurring association of dietary specialization and alkaloid sequestration in dendrobatids, which suggests parallel evolutionary trends in the origins of defensive mechanisms.

Collaboration


Dive into the David C. Cannatella's collaboration.

Top Co-Authors

Avatar

David M. Hillis

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Juan C. Santos

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Luis A. Coloma

Pontificia Universidad Católica del Ecuador

View shared research outputs
Top Co-Authors

Avatar

Santiago R. Ron

Pontificia Universidad Católica del Ecuador

View shared research outputs
Top Co-Authors

Avatar

David B. Wake

University of California

View shared research outputs
Top Co-Authors

Avatar

Catherine R. Darst

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Chris Funk

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Ben J. Evans

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge