David C. Forney
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David C. Forney.
Science | 2007
Daniel H. Rothman; David C. Forney
Degradation of marine organic carbon provides a major source of atmospheric carbon dioxide, whereas preservation in sediments results in accumulation of oxygen. These processes involve the slow decay of chemically recalcitrant compounds and physical protection. To assess the importance of physical protection, we constructed a reaction-diffusion model in which organic matter differs only in its accessibility to microbial degradation but not its intrinsic reactivity. The model predicts that organic matter decays logarithmically with time t and that decay rates decrease approximately as 0.2 × t–1 until burial. Analyses of sediment-core data are consistent with these predictions.
Journal of the Royal Society Interface | 2012
David C. Forney; Daniel H. Rothman
Carbon removed from the atmosphere by photosynthesis is released back by respiration. Although some organic carbon is degraded quickly, older carbon persists; consequently carbon stocks are much larger than predicted by initial decomposition rates. This disparity can be traced to a wide range of first-order decay-rate constants, but the rate distributions and the mechanisms that determine them are unknown. Here, we pose and solve an inverse problem to find the rate distributions corresponding to the decomposition of plant matter throughout North America. We find that rate distributions are lognormal, with a mean and variance that depend on climatic conditions and substrate. Changes in temperature and precipitation scale all rates similarly, whereas the initial substrate composition sets the time scale of faster rates. These findings probably result from the interplay of stochastic processes and biochemical kinetics, suggesting that the intrinsic variability of decomposers, substrate and environment results in a predictable distribution of rates. Within this framework, turnover times increase exponentially with the kinetic heterogeneity of rates, thereby providing a theoretical expression for the persistence of recalcitrant organic carbon in the natural environment.
Science | 2008
Daniel H. Rothman; David C. Forney
Fast enzyme deactivation rates are not required by our physical model of organic matter decay. Instead, low effective diffusivities arising from sorption of enzymes and physical protection by minerals are sufficient. Our model predicts observed temporal trends in organic-matter decay rather than specific rate constants. Existing statistical models of intrinsic reactivity explain observed trends empirically but not theoretically.
Ecological Monographs | 2014
David C. Forney; Daniel H. Rothman
The decay of organic matter in natural ecosystems is controlled by a network of biologically, physically, and chemically driven processes. Decomposing organic matter is often described as a continuum that transforms and degrades over a wide range of rates, but it is difficult to quantify this heterogeneity in models. Most models of carbon degradation consider a network of only a few organic matter states that transform homogeneously at a single rate. These models may fail to capture the range of residence times of carbon in the soil organic matter continuum. Here we assume that organic matter is distributed among a continuous network of states that transform with stochastic, heterogeneous kinetics. We pose and solve an inverse problem in order to identify the rates of carbon exiting the underlying degradation network (exit rates) and apply this approach to plant matter decay throughout North America. This approach provides estimates of carbon retention in the network without knowing the details of underlying state transformations. We find that the exit rates are approximately lognormal, suggesting that carbon flow through a complex degradation network can be described with just a few parameters. These results indicate that the serial and feedback processes in natural degradation networks can be well approximated by a continuum of parallel decay rates.
Archive | 2007
David C. Forney; Daniel H. Rothman
Copernicus | 2012
David C. Forney; Daniel H. Rothman
Archive | 2010
Christopher L. Follett; David C. Forney; Daniel J. Repeta; Daniel H. Rothman
Archive | 2009
David C. Forney; Daniel H. Rothman
Archive | 2008
David C. Forney; Daniel H. Rothman
Archive | 2007
Daniel H. Rothman; David C. Forney