Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David C. Glahn is active.

Publication


Featured researches published by David C. Glahn.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Correspondence of the brain's functional architecture during activation and rest.

Stephen M. Smith; Peter T. Fox; Karla L. Miller; David C. Glahn; P. Mickle Fox; Clare E. Mackay; Nicola Filippini; Kate E. Watkins; Roberto Toro; Angela R. Laird; Christian F. Beckmann

Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is “at rest.” In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically “active” even when at “rest.”


Archives of General Psychiatry | 2009

Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia.

Michael J. Minzenberg; Angela R. Laird; Sarah M. Thelen; Cameron S. Carter; David C. Glahn

CONTEXT Prefrontal cortical dysfunction is frequently reported in schizophrenia. It remains unclear whether this represents the coincidence of several prefrontal region- and process-specific impairments or a more unitary dysfunction in a superordinate cognitive control network. Whether these impairments are properly considered reflective of hypofrontality vs hyperfrontality remains unresolved. OBJECTIVES To test whether common nodes of the cognitive control network exhibit altered activity across functional neuroimaging studies of executive cognition in schizophrenia and to evaluate the direction of these effects. DATA SOURCES PubMed database. STUDY SELECTION Forty-one English-language, peer-reviewed articles published prior to February 2007 were included. All reports used functional neuroimaging during executive function performance by adult patients with schizophrenia and reported whole-brain analyses in standard stereotactic space. Tasks primarily included the delayed match-to-sample, N-back, AX-CPT, and Stroop tasks. DATA EXTRACTION Activation likelihood estimation modeling reported activation maxima as the center of a 3-dimensional gaussian function in the meta-analysis, with statistical thresholding and correction for multiple comparisons. DATA SYNTHESIS In within-group analyses, healthy controls and patients activated a similarly distributed cortical-subcortical network, prominently including the dorsolateral prefrontal cortex (PFC), ventrolateral PFC, anterior cingulate cortex (ACC), and thalamus. In between-group analyses, patients showed reduced activation in the left dorsolateral PFC, rostral/dorsal ACC, left thalamus (with significant co-occurrence of these areas), and inferior/posterior cortical areas. Increased activation was observed in several midline cortical areas. Activation within groups varied modestly by task. CONCLUSIONS Healthy adults and schizophrenic patients activate a qualitatively similar neural network during executive task performance, consistent with the engagement of a general-purpose cognitive control network, with critical nodes in the dorsolateral PFC and ACC. Nevertheless, patients with schizophrenia show altered activity with deficits in the dorsolateral PFC, ACC, and mediodorsal nucleus of the thalamus. Increases in activity are evident in other PFC areas, which could be compensatory in nature.


Human Brain Mapping | 2005

ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts

Angela R. Laird; P. Mickle Fox; Cathy J. Price; David C. Glahn; Angela M. Uecker; Jack L. Lancaster; Peter E. Turkeltaub; Peter Kochunov; Peter T. Fox

Activation likelihood estimation (ALE) has greatly advanced voxel‐based meta‐analysis research in the field of functional neuroimaging. We present two improvements to the ALE method. First, we evaluate the feasibility of two techniques for correcting for multiple comparisons: the single threshold test and a procedure that controls the false discovery rate (FDR). To test these techniques, foci from four different topics within the literature were analyzed: overt speech in stuttering subjects, the color‐word Stroop task, picture‐naming tasks, and painful stimulation. In addition, the performance of each thresholding method was tested on randomly generated foci. We found that the FDR method more effectively controls the rate of false positives in meta‐analyses of small or large numbers of foci. Second, we propose a technique for making statistical comparisons of ALE meta‐analyses and investigate its efficacy on different groups of foci divided by task or response type and random groups of similarly obtained foci. We then give an example of how comparisons of this sort may lead to advanced designs in future meta‐analytic research. Hum Brain Mapp 25:155–164, 2005.


NeuroImage | 2010

Cortical Thickness or Grey Matter Volume? The Importance of Selecting the Phenotype for Imaging Genetics Studies

Anderson M. Winkler; Peter Kochunov; John Blangero; Laura Almasy; Karl Zilles; Peter T. Fox; Ravindranath Duggirala; David C. Glahn

Choosing the appropriate neuroimaging phenotype is critical to successfully identify genes that influence brain structure or function. While neuroimaging methods provide numerous potential phenotypes, their role for imaging genetics studies is unclear. Here we examine the relationship between brain volume, grey matter volume, cortical thickness and surface area, from a genetic standpoint. Four hundred and eighty-six individuals from randomly ascertained extended pedigrees with high-quality T1-weighted neuroanatomic MRI images participated in the study. Surface-based and voxel-based representations of brain structure were derived, using automated methods, and these measurements were analysed using a variance-components method to identify the heritability of these traits and their genetic correlations. All neuroanatomic traits were significantly influenced by genetic factors. Cortical thickness and surface area measurements were found to be genetically and phenotypically independent. While both thickness and area influenced volume measurements of cortical grey matter, volume was more closely related to surface area than cortical thickness. This trend was observed for both the volume-based and surface-based techniques. The results suggest that surface area and cortical thickness measurements should be considered separately and preferred over gray matter volumes for imaging genetic studies.


Journal of Cognitive Neuroscience | 2011

Behavioral interpretations of intrinsic connectivity networks

Angela R. Laird; P. Mickle Fox; Simon B. Eickhoff; Jessica A. Turner; Kimberly L. Ray; D. Reese McKay; David C. Glahn; Christian F. Beckmann; Stephen M. Smith; Peter T. Fox

An increasingly large number of neuroimaging studies have investigated functionally connected networks during rest, providing insight into human brain architecture. Assessment of the functional qualities of resting state networks has been limited by the task-independent state, which results in an inability to relate these networks to specific mental functions. However, it was recently demonstrated that similar brain networks can be extracted from resting state data and data extracted from thousands of task-based neuroimaging experiments archived in the BrainMap database. Here, we present a full functional explication of these intrinsic connectivity networks at a standard low order decomposition using a neuroinformatics approach based on the BrainMap behavioral taxonomy as well as a stratified, data-driven ordering of cognitive processes. Our results serve as a resource for functional interpretations of brain networks in resting state studies and future investigations into mental operations and the tasks that drive them.


Cognitive, Affective, & Behavioral Neuroscience | 2012

Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions

Tara A. Niendam; Angela R. Laird; Kimberly L. Ray; Y. Monica Dean; David C. Glahn; Cameron S. Carter

Classic cognitive theory conceptualizes executive functions as involving multiple specific domains, including initiation, inhibition, working memory, flexibility, planning, and vigilance. Lesion and neuroimaging experiments over the past two decades have suggested that both common and unique processes contribute to executive functions during higher cognition. It has been suggested that a superordinate fronto–cingulo–parietal network supporting cognitive control may also underlie a range of distinct executive functions. To test this hypothesis in the largest sample to date, we used quantitative meta-analytic methods to analyze 193 functional neuroimaging studies of 2,832 healthy individuals, ages 18–60, in which performance on executive function measures was contrasted with an active control condition. A common pattern of activation was observed in the prefrontal, dorsal anterior cingulate, and parietal cortices across executive function domains, supporting the idea that executive functions are supported by a superordinate cognitive control network. However, domain-specific analyses showed some variation in the recruitment of anterior prefrontal cortex, anterior and midcingulate regions, and unique subcortical regions such as the basal ganglia and cerebellum. These results are consistent with the existence of a superordinate cognitive control network in the brain, involving dorsolateral prefrontal, anterior cingulate, and parietal cortices, that supports a broad range of executive functions.


Human Brain Mapping | 2005

Beyond hypofrontality: A quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia

David C. Glahn; J. Daniel Ragland; Adir Abramoff; Jennifer Barrett; Angela R. Laird; Carrie E. Bearden; Dawn I. Velligan

Although there is considerable evidence that patients with schizophrenia fail to activate the dorsolateral prefrontal cortex (DLPFC) to the degree seen in normal comparison subjects when performing working memory or executive tasks, hypofrontality may be coupled with relatively increased activity in other brain regions. However, most imaging studies of working memory in schizophrenia have focused on DLPFC activity. The goal of this work is to review functional neuroimaging studies that contrasted patients with schizophrenia and healthy comparison subjects during a prototypical working memory task, the n‐back paradigm, to highlight areas of hyper‐ and hypoactivation in schizophrenia. We utilize a quantitative meta‐analysis method to review 12 imaging studies where patients with schizophrenia were contrasted with healthy comparison subjects while performing the n‐back paradigm. Although we find clear support for hypofrontality, we also document consistently increased activation in anterior cingulate and left frontal pole regions in patients with schizophrenia compared to that in controls. These data suggest that whereas reduced DLPFC activation is reported consistently in patients with schizophrenia relative to healthy subjects, abnormal activation patterns are not restricted to this region, raising questions as to whether the pathophysiological dysfunction in schizophrenia is specific to the DLPFC and about the relationship between impaired performance and aberrant activation patterns. The complex pattern of hyper‐ and hypoactivation consistently found across studies implies that rather than focusing on DLPFC dysregulation, researchers should consider the entire network of regions involved in a given task when making inferences about the biological mechanisms of schizophrenia. Hum Brain Mapp 25:60–69, 2005.


American Journal of Psychiatry | 2008

The Anatomy of First-Episode and Chronic Schizophrenia: An Anatomical Likelihood Estimation Meta-Analysis

M.R.C.P. Ian Ellison-Wright; David C. Glahn; Angela R. Laird; B.S. Sarah M. Thelen; Edward T. Bullmore

OBJECTIVE The authors sought to map gray matter changes in first-episode schizophrenia and to compare these with the changes in chronic schizophrenia. They postulated that the data would show a progression of changes from hippocampal deficits in first-episode schizophrenia to include volume reductions in the amygdala and cortical gray matter in chronic schizophrenia. METHOD A systematic search was conducted for voxel-based structural MRI studies of patients with first-episode schizophrenia and chronic schizophrenia in relation to comparison groups. Meta-analyses of the coordinates of gray matter differences were carried out using anatomical likelihood estimation. Maps of gray matter changes were constructed, and subtraction meta-analysis was used to compare them. RESULTS A total of 27 articles were identified for inclusion in the meta-analyses. A marked correspondence was observed in regions affected by both first-episode schizophrenia and chronic schizophrenia, including gray matter decreases in the thalamus, the left uncus/amygdala region, the insula bilaterally, and the anterior cingulate. In the comparison of first-episode schizophrenia and chronic schizophrenia, decreases in gray matter volume were detected in first-episode schizophrenia but not in chronic schizophrenia in the caudate head bilaterally; decreases were more widespread in cortical regions in chronic schizophrenia. CONCLUSIONS Anatomical changes in first-episode schizophrenia broadly coincide with a basal ganglia-thalamocortical circuit. These changes include bilateral reductions in caudate head gray matter, which are absent in chronic schizophrenia. Comparing first-episode schizophrenia and chronic schizophrenia, the authors did not find evidence for the temporolimbic progression of pathology from hippocampus to amygdala, but there was evidence for progression of cortical changes.


Biological Psychiatry | 2008

Meta-Analysis of Gray Matter Anomalies in Schizophrenia: Application of Anatomic Likelihood Estimation and Network Analysis

David C. Glahn; Angela R. Laird; Ian Ellison-Wright; Sarah M. Thelen; Jennifer L. Robinson; Jack L. Lancaster; Edward T. Bullmore; Peter T. Fox

BACKGROUND Although structural neuroimaging methods have been widely used to study brain morphology in schizophrenia, synthesizing this literature has been difficult. With the increasing popularity of voxel-based morphometric (VBM) methods in which group differences are reported in standardized coordinates, it is possible to apply powerful meta-analytic techniques initially designed for functional neuroimaging. In this study, we performed a voxelwise, coordinate-based meta-analysis to better conceptualize the neuroanatomic correlates of schizophrenia. METHODS Thirty-one peer-reviewed articles, with a total of 1195 patients with schizophrenia contrasted with 1262 healthy volunteers, were included in the meta-analysis. Coordinates from each article were used to create a statistical map that estimated the likelihood of between-group gray matter density differences at every brain voxel. These results were subsequently entered into a network analysis. RESULTS Patients had reduced gray matter density relative to control subjects in a distributed network of regions, including bilateral insular cortex, anterior cingulate, left parahippocampal gyrus, left middle frontal gyrus, postcentral gyrus, and thalamus. Network analysis grouped these regions into four distinct networks that potentially represent different pathologic processes. Patients had increased gray matter density in striatal regions. CONCLUSIONS This study expands on previous meta-analyses of the neuroanatomy of schizophrenia by elucidating a series of brain networks disrupted by the illness. Because it is possible that these networks are influenced by independent etiologic factors, this work should foster more detailed neural models of the illness and focus research designed to discover the mechanisms of gray matter reduction in schizophrenia.


The Journal of Neuroscience | 2009

Investigating the Functional Heterogeneity of the Default Mode Network Using Coordinate-Based Meta-Analytic Modeling

Angela R. Laird; Simon B. Eickhoff; Karl Li; Donald A. Robin; David C. Glahn; Peter T. Fox

The default mode network (DMN) comprises a set of regions that exhibit ongoing, intrinsic activity in the resting state and task-related decreases in activity across a range of paradigms. However, DMN regions have also been reported as task-related increases, either independently or coactivated with other regions in the network. Cognitive subtractions and the use of low-level baseline conditions have generally masked the functional nature of these regions. Using a combination of activation likelihood estimation, which assesses statistically significant convergence of neuroimaging results, and tools distributed with the BrainMap database, we identified core regions in the DMN and examined their functional heterogeneity. Meta-analytic coactivation maps of task-related increases were independently generated for each region, which included both within-DMN and non-DMN connections. Their functional properties were assessed using behavioral domain metadata in BrainMap. These results were integrated to determine a DMN connectivity model that represents the patterns of interactions observed in task-related increases in activity across diverse tasks. Subnetwork components of this model were identified, and behavioral domain analysis of these cliques yielded discrete functional properties, demonstrating that components of the DMN are differentially specialized. Affective and perceptual cliques of the DMN were identified, as well as the cliques associated with a reduced preference for motor processing. In summary, we used advanced coordinate-based meta-analysis techniques to explicate behavior and connectivity in the default mode network; future work will involve applying this analysis strategy to other modes of brain function, such as executive function or sensorimotor systems.

Collaboration


Dive into the David C. Glahn's collaboration.

Top Co-Authors

Avatar

John Blangero

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Peter T. Fox

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Laura Almasy

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Joanne E. Curran

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rene L. Olvera

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravi Duggirala

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge