David C. Lyon
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David C. Lyon.
Neuron | 2007
Ian R. Wickersham; David C. Lyon; Richard J. O. Barnard; Takuma Mori; Stefan Finke; Karl-Klaus Conzelmann; John A. T. Young; Edward M. Callaway
There has never been a wholesale way of identifying neurons that are monosynaptically connected either to some other cell group or, especially, to a single cell. The best available tools, transsynaptic tracers, are unable to distinguish weak direct connections from strong indirect ones. Furthermore, no tracer has proven potent enough to label any connected neurons whatsoever when starting from a single cell. Here we present a transsynaptic tracer that crosses only one synaptic step, unambiguously identifying cells directly presynaptic to the starting population. Based on rabies virus, it is genetically targetable, allows high-level expression of any gene of interest in the synaptically coupled neurons, and robustly labels connections made to single cells. This technology should enable a far more detailed understanding of neural connectivity than has previously been possible.
Nature Neuroscience | 2005
Jorge Mariño; James Schummers; David C. Lyon; Lars Schwabe; Oliver Beck; Peter Wiesing; Klaus Obermayer; Mriganka Sur
Cortical computations critically involve local neuronal circuits. The computations are often invariant across a cortical area yet are carried out by networks that can vary widely within an area according to its functional architecture. Here we demonstrate a mechanism by which orientation selectivity is computed invariantly in cat primary visual cortex across an orientation preference map that provides a wide diversity of local circuits. Visually evoked excitatory and inhibitory synaptic conductances are balanced exquisitely in cortical neurons and thus keep the spike response sharply tuned at all map locations. This functional balance derives from spatially isotropic local connectivity of both excitatory and inhibitory cells. Modeling results demonstrate that such covariation is a signature of recurrent rather than purely feed-forward processing and that the observed isotropic local circuit is sufficient to generate invariant spike tuning.
Neuron | 2010
David C. Lyon; Jonathan J. Nassi; Edward M. Callaway
The superior colliculus (SC) is the first station in a subcortical relay of retinal information to extrastriate visual cortex. Ascending SC projections pass through pulvinar and LGN on their way to cortex, but it is not clear how many synapses are required to complete these circuits or which cortical areas are involved. To examine this relay directly, we injected transynaptic rabies virus into several extrastriate visual areas. We observed disynaptically labeled cells in superficial, retino-recipient SC layers from injections in dorsal stream areas MT and V3, but not the earliest extrastriate area, V2, nor ventral stream area V4. This robust SC-dorsal stream pathway is most likely relayed through the inferior pulvinar and can provide magnocellular-like sensory inputs necessary for motion perception and the computation of orienting movements. Furthermore, by circumventing primary visual cortex, this pathway may also underlie the remaining visual capacities associated with blindsight.
Neuron | 2006
Jonathan J. Nassi; David C. Lyon; Edward M. Callaway
Dorsal visual cortical areas are thought to be dominated by input from the magnocellular (M) visual pathway, with little or no parvocellular (P) contribution. These relationships are supported by a close correlation between the functional properties of these areas and the M pathway and by a lack of anatomical evidence for P input. Here we use rabies virus as a retrograde transynaptic tracer to show that the dorsal area MT receives strong input, via a single relay, from both M and P cells of the lateral geniculate nucleus. This surprising P input, likely relayed via layer 6 Meynert cells in primary visual cortex, can provide MT with sensitivity to a more complete range of spatial, temporal, and chromatic cues than the M pathway alone. These observations provide definitive evidence for P pathway input to MT and show that convergence of parallel visual pathways occurs in the dorsal stream.
Neuron | 2002
David C. Lyon; Jon H. Kaas
Through more than 30 years of research, the nature of the third visual area, V3, and even its existence have been in question. Here, we used injections of up to five distinguishable tracers into both dorsal and ventral portions of V1 of macaque monkeys (representing the lower and upper visual quadrant, respectively) to provide compelling evidence for a V3 that is smaller than V2. This V3 includes both dorsal and ventral halves mirroring dorsal and ventral V2 in retinotopic organization. Of the approximately ten areas with V1 connections, V3 appears to account for about 20%.
The Journal of Comparative Neurology | 2002
Hui-Xin Qi; David C. Lyon; Jon H. Kaas
Microelectrode mapping methods were used to define the parietal ventral somatosensory area (PV) on the upper bank of the lateral sulcus in five marmosets (Callithrix jacchus). In the same animals, neuroanatomical tracers were placed into electrophysiologically identified sites in PV and/or the second somatosensory area (S2). Foci of anterograde and retrograde label were related to electrophysiological maps of cortical areas and cortical and thalamic architecture. The results lead to the following conclusions: (1) Multiunit recordings from cortex on the upper bank of the lateral sulcus demonstrate that PV is somatotopically organized, with the face representation adjoining area 3b and the hindlimb and tail representations away from this border in cortex deep on the upper bank of the lateral sulcus. The forelimb representation is caudal in PV adjacent to the S2 forelimb representation. The body surface representation in PV approximates a mirror image of that in S2; (2) Areas PV and S2 are less myelinated and have less cytochrome oxidase enzyme activity than area 3b; (3) The ventroposterior inferior nucleus (VPI) of the thalamus provides the major somatosensory projections to PV. PV is reciprocally connected with VPI and anterior pulvinar; (4) PV has ipsilateral cortical connections with areas 3a, 3b, 1, and M1 and higher order somatosensory fields, and at least most of these connections are somatotopically matched; and (5) Callosal connections of PV are with S2 and PV of the other cerebral hemisphere. These results further establish PV as one of at least four somatosensory areas of the lateral sulcus of primates. J. Comp. Neurol. 443:168–182, 2002.
The Journal of Comparative Neurology | 1999
Kenneth C. Catania; David C. Lyon; Orin B. Mock; Jon H. Kaas
Cortical organization was examined in five shrew species. In three species, Blarina brevicauda, Cryptotis parva, and Sorex palustris, microelectrode recordings were made in cortex to determine the organization of sensory areas. Cortical recordings were then related to flattened sections of cortex processed for cytochrome oxidase or myelin to reveal architectural borders. An additional two species (Sorex cinereus and Sorex longirostris) with visible cortical subdivisions based on histology alone were analyzed without electrophysiological mapping. A single basic plan of cortical organization was found in shrews, consisting of a few clearly defined sensory areas located caudally in cortex. Two somatosensory areas contained complete representations of the contralateral body, corresponding to primary somatosensory cortex (S1) and secondary somatosensory cortex (S2). A small primary visual cortex (V1) was located closely adjacent to S1, whereas auditory cortex (A1) was located in extreme caudolateral cortex, partially encircled by S2. Areas did not overlap and had sharp, histochemically apparent and electrophysiologically defined borders. The adjacency of these areas suggests a complete absence of intervening higher level or association areas. Based on a previous study of corticospinal connections, a presumptive primary motor cortex (M1) was identified directly rostral to S1. Apparently, in shrews, the solution to having extremely little neocortex is to have only a few small cortical subdivisions. However, the small areas remain discrete, well organized, and functional. This cortical organization in shrews is likely a derived condition, because a wide range of extant mammals have a greater number of cortical subdivisions. J. Comp. Neurol. 410:55–72, 1999.
Progress in Brain Research | 2001
Jon H. Kaas; David C. Lyon
After years of experimentation and substantial progress, there is still only limited agreement on how visual cortex in primates is organized, and what features of this organization are variable or stable across lines of primate phylogeny. Only three visual areas, V1, V2, and MT, are widely recognized as common to all primates, although there are certainly more. Here we consider various concepts of how the cortex along the outer border of V2 is organized. An early proposal was that this region is occupied by a V3 that is as wide and as long as V2, and represents the visual hemifield as a mirror image of V2. We refer to this notion as the classical V3 or V3-C. Another proposal is that only the dorsal half of V3-C exists, the half representing the lower visual quadrant, and thus the representation is incomplete (V3-I) by half. A version of this proposal is that V3-I is discontinuous, extremely thin in places, and highly variable across individuals, much as a vestigial or degenerate structure might be (V3-IF-incomplete and fragmented). A fourth proposal is that there is no V3. Many results suggest that a series of visual areas border V2, none of which has the characteristics of V3. Alternatively, the possibility exists that primate taxa differ with regard to visual areas bordering V2. Currently, much of the supporting evidence for a classical V3 comes from fMRI studies in humans, much of the evidence for a series of bordering areas comes from New World Monkeys and prosimian galagos, and much of the evidence for a V3-I or V3-IF comes from macaque monkeys. Possibly all these interpretations of visual cortex organization are valid, but each for only one of the major groups of primate evolution. Here, we suggest that none of these interpretations is correct, and propose instead that a modified V3 (V3-M) exists in a similar form in all primates. This V3-M is smaller and thinner than V3-C, discontinuous in the middle, but with comparable dorsal and ventral halves representing the lower and upper visual hemifields, respectively. Because the evidence for V3-M is limited, and it stems in part from our ongoing but incomplete comparative studies of V1 connections in primates, this suggestion requires further experimental evaluation and it remains tentative.
The Journal of Comparative Neurology | 1998
David C. Lyon; Neeraj Jain; Jon H. Kaas
The ipsilateral and contralateral cortical connections of visual cortex of tree shrews (Tupaia belangeri)were investigated by placing restricted injections of fluorochrome tracers, wheat germ agglutinin‐horseradish peroxidase, or biotinylated dextran amine into area 17 (V1), area 18 (V2), or the adjoining temporal dorsal area (TD). As previously reported, V1 was characterized by a widespread, patchy pattern of intrinsic connections; ipsilateral connections with V2, TD, and to a lesser extent, other areas of the temporal cortex; and contralateral connections with V1, V2, and TD. A surface‐view of the myelin pattern in V1 revealed a patchwork of light and dark module‐like regions. The ipsilateral connections with V2 and TD were roughly topographic, whereas heterotopic locations in V1 were callosally connected. Injections in V2 labeled as much as one third of V2 in a patchy pattern, and portions of ipsilateral V1 and TD in roughly topographic patterns. In addition, connections with several other visual areas in the temporal lobe were revealed. Contralaterally, most of the label was in V2, with some in V1 and TD. Injections in TD demonstrated connections within the region, and with adjoining portions of the temporal cortex, V2, and V1. There were sparse connections with an oval of densely myelinated cortex, which we have termed the temporal inferior area (TI). Callosal connections were concentrated in TD, but also included V2. The results provide further evidence for modular organizations within V1 and V2, and reveal for the first time the complete patterns of cortical connections of V2 and TD. The results are consistent with the proposal that at least three visual areas, the temporal anterior area, TA, the temporal dorsal area, TD, and the temporal posterior area, TP, exist along the rostrolateral border of V2 in tree shrews; suggest visual involvement of at least three other areas, the temporal inferior area, TI, the temporal anterior lateral area, and the temporal posterior inferior area located more ventrally in the temporal cortex; and fortify the conclusion that TD is the likely homologue of the middle temporal visual area of primates. Because tree shrews are considered close relatives of primates, the evidence for several visual areas along the border of V2 is more compatible with theories that propose a series of visual areas along V2 in primates, rather than a single visual area, V3. J. Comp. Neurol. 401:109–128, 1998.
The Journal of Comparative Neurology | 2002
David C. Lyon; Jon H. Kaas
We used patterns of connections of primary visual cortex (V1) to reevaluate differing proposals on the organization of extrastriate cortex in three species of New World monkeys. Several fluorescent tracers and the bidirectional tracer cholera toxin B subunit (CTB) were injected into dorsal V1 (representing the lower visual quadrant) and ventral V1 (representing the upper visual quadrant) of titi, squirrel, and owl monkeys. Labeled cells and terminals were plotted on brain sections cut parallel to the surface of flattened cortex and were related to architectonic boundaries. The results provided compelling evidence for both dorsal V3 with dorsal V1 connections and ventral V3 with ventral V1 connections. The connection pattern indicated that V3 represents the visual hemifield as a mirror image of V2. In addition, V3 could be recognized by a weak banding pattern in brain sections processed for cytochrome oxidase. V1 has connections with at least 12 subdivisions of visual cortex, with half of the connections involving V2 and 20% V3. Comparable results were obtained from all three species, suggesting that visual cortex is similarly organized. J. Comp. Neurol. 449:281–297, 2002.