David C. McKinney
AstraZeneca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David C. McKinney.
Journal of Medicinal Chemistry | 2013
Manoj Kale; Anandkumar Raichurkar; Shahul Hameed P; David Waterson; David C. McKinney; M. R. Manjunatha; Usha Kranthi; Krishna Koushik; Lalit kumar Jena; Vikas Shinde; Suresh Rudrapatna; Shubhada Barde; Vaishali Humnabadkar; Prashanti Madhavapeddi; Halesha D. Basavarajappa; Anirban Ghosh; V. K. Ramya; Supreeth Guptha; Sreevalli Sharma; Prakash Vachaspati; K.N. Mahesh Kumar; Jayashree Giridhar; Jitendar Reddy; Samit Ganguly; Vijaykamal Ahuja; Sheshagiri Gaonkar; C. N. Naveen Kumar; Derek Ogg; Julie Tucker; P. Ann Boriack-Sjodin
A pharmacophore-based search led to the identification of thiazolopyridine ureas as a novel scaffold with antitubercular activity acting through inhibition of DNA Gyrase B (GyrB) ATPase. Evaluation of the binding mode of thiazolopyridines in a Mycobacterium tuberculosis (Mtb) GyrB homology model prompted exploration of the side chains at the thiazolopyridine ring C-5 position to access the ribose/solvent pocket. Potent compounds with GyrB IC50 ≤ 1 nM and Mtb MIC ≤ 0.1 μM were obtained with certain combinations of side chains at the C-5 position and heterocycles at the C-6 position of the thiazolopyridine core. Substitutions at C-5 also enabled optimization of the physicochemical properties. Representative compounds were cocrystallized with Streptococcus pneumoniae (Spn) ParE; these confirmed the binding modes predicted by the homology model. The target link to GyrB was confirmed by genetic mapping of the mutations conferring resistance to thiazolopyridine ureas. The compounds are bactericidal in vitro and efficacious in vivo in an acute murine model of tuberculosis.
Journal of Bacteriology | 2012
Ed T. Buurman; Melinda A. Foulk; Ning Gao; Valerie A. Laganas; David C. McKinney; Demetri T. Moustakas; Jonathan A. Rose; Adam B. Shapiro; Paul R. Fleming
A series of inhibitors with a squaramide core was synthesized following its discovery in a high-throughput screen for novel inhibitors of a transcription-coupled translation assay using Escherichia coli S30 extracts. The inhibitors were inactive when the plasmid substrate was replaced with mRNA, suggesting they interfered with transcription. This was confirmed by their inhibition of purified E. coli RNA polymerase. The series had antimicrobial activity against efflux-negative strains of E. coli and Haemophilus influenzae. Like rifampin, the squaramides preferentially inhibited synthesis of RNA and protein over fatty acids, peptidoglycan, and DNA. However, squaramide-resistant mutants were not cross-resistant to rifampin. Nine different mutations were found in parts of rpoB or rpoC that together encode the so-called switch region of RNA polymerase. This is the binding site of the natural antibiotics myxopyronin, corallopyronin, and ripostatin and the drug fidaxomicin. Computational modeling using the X-ray crystal structure of the myxopyronin-bound RNA polymerase of Thermus thermophilus suggests a binding mode of these inhibitors that is consistent with the resistance mutations. The squaramides are the first reported non-natural-product-related, rapidly diversifiable antibacterial inhibitors acting via the switch region of RNA polymerase.
Antimicrobial Agents and Chemotherapy | 2013
Boudewijn L. M. de Jonge; Grant K. Walkup; Sushmita D. Lahiri; Hoan Huynh; Georg Neckermann; Luke Utley; Tory Nash; Jesse Brock; Maryann San Martin; Amy Kutschke; Valerie A. Laganas; Laurel Hajec; Rong-Fang Gu; Haihong Ni; Brendan Chen; Kim Marie Hutchings; Elise Holt; David C. McKinney; Ning Gao; Stephania Livchak; Jason Thresher
ABSTRACT Inhibitors of 4′-phosphopantetheine adenylyltransferase (PPAT) were identified through high-throughput screening of the AstraZeneca compound library. One series, cycloalkyl pyrimidines, showed inhibition of PPAT isozymes from several species, with the most potent inhibition of enzymes from Gram-positive species. Mode-of-inhibition studies with Streptococcus pneumoniae and Staphylococcus aureus PPAT demonstrated representatives of this series to be reversible inhibitors competitive with phosphopantetheine and uncompetitive with ATP, binding to the enzyme-ATP complex. The potency of this series was optimized using structure-based design, and inhibition of cell growth of Gram-positive species was achieved. Mode-of-action studies, using generation of resistant mutants with targeted sequencing as well as constructs that overexpress PPAT, demonstrated that growth suppression was due to inhibition of PPAT. An effect on bacterial burden was demonstrated in mouse lung and thigh infection models, but further optimization of dosing requirements and compound properties is needed before these compounds can be considered for progress into clinical development. These studies validated PPAT as a novel target for antibacterial therapy.
Journal of Medicinal Chemistry | 2013
Pamela Hill; Ayome Abibi; Robert Albert; Beth Andrews; Moriah M. Gagnon; Ning Gao; Tyler Grebe; Laurel Hajec; Jian Huang; Stephania Livchak; Sushmita D. Lahiri; David C. McKinney; Jason Thresher; Hongming Wang; Nelson B. Olivier; Ed T. Buurman
The tRNA-(N(1)G37) methyltransferase (TrmD) is essential for growth and highly conserved in both Gram-positive and Gram-negative bacterial pathogens. Additionally, TrmD is very distinct from its human orthologue TRM5 and thus is a suitable target for the design of novel antibacterials. Screening of a collection of compound fragments using Haemophilus influenzae TrmD identified inhibitory, fused thieno-pyrimidones that were competitive with S-adenosylmethionine (SAM), the physiological methyl donor substrate. Guided by X-ray cocrystal structures, fragment 1 was elaborated into a nanomolar inhibitor of a broad range of Gram-negative TrmD isozymes. These compounds demonstrated no activity against representative human SAM utilizing enzymes, PRMT1 and SET7/9. This is the first report of selective, nanomolar inhibitors of TrmD with demonstrated ability to order the TrmD lid in the absence of tRNA.
Journal of Medicinal Chemistry | 2015
Vadim Molodtsov; Paul R. Fleming; Charles J. Eyermann; Andrew D. Ferguson; Melinda A. Foulk; David C. McKinney; Craig E. Masse; Ed T. Buurman; Katsuhiko S. Murakami
Squaramides constitute a novel class of RNA polymerase inhibitors of which genetic evidence and computational modeling previously have suggested an inhibitory mechanism mediated by binding to the RNA polymerase switch region. An iterative chemistry program increased the fraction unbound to human plasma protein from below minimum detection levels, i.e., <1% to 4-6%, while retaining biochemical potency. Since in vitro antimicrobial activity against an efflux-negative strain of Haemophilus influenzae was 4- to 8-fold higher, the combined improvement was at least 20- to 60-fold. Cocrystal structures of Escherichia coli RNA polymerase with two key squaramides showed displacement of the switch 2, predicted to interfere with the conformational change of the clamp domain and/or with binding of template DNA, a mechanism akin to that of natural product myxopyronin. Furthermore, the structures confirmed the chemical features required for biochemical potency. The terminal isoxazole and benzyl rings bind into distinct relatively narrow, hydrophobic pockets, and both are required for biochemical potency. In contrast, the linker composed of squarate and piperidine accesses different conformations in their respective cocrystal structures with RNA polymerase, reflecting its main role of proper orientation of the aforementioned terminal rings. These observations further explain the tolerance of hydrophilic substitutions in the linker region that was exploited to improve the fraction unbound to human plasma protein while retaining biochemical potency.
Journal of Biological Chemistry | 2014
Ayome Abibi; Andrew D. Ferguson; Paul R. Fleming; Ning Gao; Laurel Hajec; Jun Hu; Valerie A. Laganas; David C. McKinney; Sarah M. McLeod; D. Bryan Prince; Adam B. Shapiro; Ed T. Buurman
Background: Phenylalanyl-tRNA synthetase inhibitors have been shown to be efficacious in animal models of infection. Results: Inhibitors occupy a newly identified hydrophobic auxiliary binding pocket. Conclusion: Compound binding in this pocket leads to high screening hit rates, resistance frequencies, and elevated plasma protein binding. Significance: New inhibitors may be identified by avoiding the auxiliary pocket. The antimicrobial activity of phenyl-thiazolylurea-sulfonamides against Staphylococcus aureus PheRS are dependent upon phenylalanine levels in the extracellular fluids. Inhibitor efficacy in animal models of infection is substantially diminished by dietary phenylalanine intake, thereby reducing the perceived clinical utility of this inhibitor class. The search for novel antibacterial compounds against Gram-negative pathogens led to a re-evaluation of this phenomenon, which is shown here to be unique to S. aureus. Inhibition of macromolecular syntheses and characterization of novel resistance mutations in Escherichia coli demonstrate that antimicrobial activity of phenyl-thiazolylurea-sulfonamides is mediated by PheRS inhibition, validating this enzyme as a viable drug discovery target for Gram-negative pathogens. A search for novel inhibitors of PheRS yielded three novel chemical starting points. NMR studies were used to confirm direct target engagement for phenylalanine-competitive hits. The crystallographic structure of Pseudomonas aeruginosa PheRS defined the binding modes of these hits and revealed an auxiliary hydrophobic pocket that is positioned adjacent to the phenylalanine binding site. Three viable inhibitor-resistant mutants were mapped to this pocket, suggesting that this region is a potential liability for drug discovery.
ACS Chemical Biology | 2014
Shahul Hameed P; Praveena Manjrekar; Murugan Chinnapattu; Vaishali Humnabadkar; Gajanan Shanbhag; Chaitanyakumar Kedari; Naina Vinay Mudugal; Anisha Ambady; Boudewijn L. M. de Jonge; Claire Sadler; Beena Paul; Shubha Sriram; Parvinder Kaur; Supreeth Guptha; Anandkumar Raichurkar; Paul R. Fleming; Charles J. Eyermann; David C. McKinney; Vasan K. Sambandamurthy; Manoranjan Panda; Sudha Ravishankar
The bacterial peptidoglycan biosynthesis pathway provides multiple targets for antibacterials, as proven by the clinical success of β-lactam and glycopeptide classes of antibiotics. The Mur ligases play an essential role in the biosynthesis of the peptidoglycan building block, N-acetyl-muramic acid-pentapeptide. MurC, the first of four Mur ligases, ligates l-alanine to UDP-N-acetylmuramic acid, initiating the synthesis of pentapeptide precursor. Therefore, inhibiting the MurC enzyme should result in bacterial cell death. Herein, we report a novel class of pyrazolopyrimidines with subnanomolar potency against both Escherichia coli and Pseudomonas aeruginosa MurC enzymes, which demonstrates a concomitant bactericidal activity against efflux-deficient strains. Radio-labeled precursor incorporation showed these compounds selectively inhibited peptidoglycan biosynthesis, and genetic studies confirmed the target of pyrazolopyrimidines to be MurC. In the presence of permeability enhancers such as colistin, pyrazolopyrimidines exhibited low micromolar MIC against the wild-type bacteria, thereby, indicating permeability and efflux as major challenges for this chemical series. Our studies provide biochemical and genetic evidence to support the essentiality of MurC and serve to validate the attractiveness of target for antibacterial discovery.
ACS Infectious Diseases | 2015
David C. McKinney; Natascha Bezdenejnih-Snyder; Krista Farrington; Jian Guo; Robert E. McLaughlin; Anatoly M. Ruvinsky; Renu Singh; Gregory S. Basarab; Sridhar Narayan; Ed T. Buurman
Negamycin is a hydrophilic antimicrobial translation inhibitor that crosses the lipophilic inner membrane of Escherichia coli via at least two transport routes to reach its intracellular target. In a minimal salts medium, negamycins peptidic nature allows illicit entry via a high-affinity route by hijacking the Dpp dipeptide transporter. Transport via a second, low-affinity route is energetically driven by the membrane potential, seemingly without the direct involvement of a transport protein. In mouse thigh models of E. coli infection, no evidence for Dpp-mediated transport of negamycin was found. The implication is that for the design of new negamycin-based analogs, the physicochemical properties required for cell entry via the low-affinity route need to be retained to achieve clinical success in the treatment of infectious diseases. Furthermore, clinical resistance to such analogs due to mutations affecting their ribosomal target or transport is expected to be rare and similar to that of aminoglycosides.
ACS Infectious Diseases | 2016
David C. McKinney; Charles J. Eyermann; Rong-Fang Gu; Jun Hu; Steven L. Kazmirski; Sushmita D. Lahiri; Andrew R. McKenzie; Adam B. Shapiro; Gloria Anne Breault
Fatty acid biosynthesis is essential to bacterial growth in Gram-negative pathogens. Several small molecules identified through a combination of high-throughput and fragment screening were cocrystallized with FabH (β-ketoacyl-acyl carrier protein synthase III) from Escherichia coli and Streptococcus pneumoniae. Structure-based drug design was used to merge several scaffolds to provide a new class of inhibitors. After optimization for Gram-negative enzyme inhibitory potency, several compounds demonstrated antimicrobial activity against an efflux-negative strain of Haemophilus influenzae. Mutants resistant to these compounds had mutations in the FabH gene near the catalytic triad, validating FabH as a target for antimicrobial drug discovery.
Analytical Biochemistry | 2012
Adam B. Shapiro; Ning Gao; Laurel Hajec; David C. McKinney
Enzyme assays for the catalytic activity of aminoacyl-tRNA synthetases generally measure the incorporation of radioactive amino acids into tRNA. Such assays are necessarily discontinuous. Leucyl-tRNA synthetase has recently gained attention as the target of novel antimicrobial compounds based on the oxaborole scaffold, examples of which have been shown to have slow binding and dissociation kinetics. Investigations of the kinetics of inhibition by these compounds would be facilitated by a continuous assay of leucyl-tRNA synthetase catalysis. Here we report a continuous fluorescence intensity-based assay for leucyl-tRNA synthetase in which the pyrophosphate product is converted to phosphate, which is detected with nanomolar sensitivity by a phosphate sensor protein. This assay was used to measure the time constants for the slow onset of inhibition and long residence time of an oxaborole-based inhibitor.