Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David C. Pallas is active.

Publication


Featured researches published by David C. Pallas.


Cell | 1990

Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A

David C. Pallas; Lilian K. Shahrik; Bruce L. Martin; Stephen R. Jaspers; Thomas B. Miller; David L. Brautigan; Thomas M. Roberts

We have purified the 36 and 63 kd cellular proteins known to associate with polyomavirus middle and small tumor (T) antigens and SV40 small t antigen. Microsequencing of the 36 kd protein indicated that it was probably identical to the catalytic subunit of protein phosphatase 2A (PP2A). Identity was confirmed by comigration on two-dimensional (2D) gels and by 2D analysis of complete chymotryptic digests. In addition, PP2A-like phosphatase activity was detected in immunoprecipitates of wild-type middle T. Immunoblotting experiments, comigration on 2D gels, and 2D analysis of limit chymotryptic digests demonstrated that the 63 kd protein, present in the middle T complex in approximately equimolar ratio to the 36 kd protein, is a known regulatory subunit of the PP2A holoenzyme. Finally, the 36 kd PP2A catalytic subunit can be immunoprecipitated by anti-pp60c-src antisera only from cells expressing wild-type middle T. These results suggest that complex formation between PP2A and T antigens may be important for T antigen-mediated transformation.


Cell | 1991

Identification of cellular proteins that can interact specifically with the T/ElA-binding region of the retinoblastoma gene product

William G. Kaelin; David C. Pallas; James A. DeCaprio; Frederic J. Kaye; David M. Livingston

The SV40 T antigen (T)/adenovirus E1A-binding domain of the retinoblastoma gene product (pRB) has been fused to S. japonicum glutathione S-transferase, and the chimera, bound to insoluble glutathione, was used to search for cellular proteins that can interact specifically with pRB. At least seven such proteins were detected in extracts of multiple human tumor cell lines. These proteins failed to bind to a family of pRB fusion proteins that harbor inactivating mutations in the T/E1A-binding domain and to the wild-type fusion protein in the presence of a peptide replica of the pRB-binding domain of T. Therefore, the binding of one or more of these proteins may contribute to the growth-suppressing function of pRB.


Cell | 1987

Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity

David R. Kaplan; Malcolm Whitman; Brian Schaffhausen; David C. Pallas; Morris F. White; Lewis C. Cantley; Thomas M. Roberts

The phosphorylation of proteins on tyrosine in vivo and in vitro was examined in 3T3 cells stimulated by platelet-derived growth factor (PDGF) and transformed by polyoma middle T antigen (MTAg) by using an antibody directed against phosphotyrosine (P-tyr). Two common events were observed upon PDGF stimulation or MTAg transformation of cells: the appearance in the immunoprecipitates of an 85 kd phosphoprotein, and increased phosphatidylinositol (PI) kinase activity. In PDGF-stimulated cells, the 85 kd phosphoprotein and PI kinase activity appeared rapidly, within 1 min of growth factor addition. The PI kinase activity and 85 kd phosphorylation were also increased in anti-P-tyr immunoprecipitates from cells transformed by v-fms and v-sis, but not by SV40 T antigen. The presence of the tyrosine-phosphorylated 85 kd protein correlated with PI kinase activity during several purification steps. These results suggest that the 85 kd phosphoprotein, a putative PI kinase, is a substrate for both the PDGF receptor and MTAg/pp60c-src tyrosine kinase activities.


Cancer Cell | 2004

Identification of specific PP2A complexes involved in human cell transformation

Wen Chen; Richard Possemato; K.Thirza Campbell; Courtney Plattner; David C. Pallas; William C. Hahn

The SV40 small t antigen (ST) interacts with the serine-threonine protein phosphatase 2A (PP2A). To investigate the role of this interaction in transformation, we suppressed the expression of the PP2A B56gamma subunit in human embryonic kidney (HEK) epithelial cells expressing SV40 large T antigen, hTERT, and H-RAS. Suppression of PP2A B56gamma expression inhibited PP2A-specific phosphatase activity similar to that achieved by ST and conferred the ability to grow in an anchorage-independent fashion and to form tumors. Overexpression of PP2A B56gamma3 in tumorigenic HEK cells expressing ST or human lung cancer cell lines partially reversed the tumorigenicity of these cells. These observations identify specific PP2A complexes involved in human cell transformation.


Journal of Virology | 2002

Analysis of the Adenovirus E1B-55K-Anchored Proteome Reveals Its Link to Ubiquitination Machinery

Josephine N. Harada; Anna Shevchenko; Andrej Shevchenko; David C. Pallas; Arnold J. Berk

ABSTRACT During the early phase of infection, the E1B-55K protein of adenovirus type 5 (Ad5) counters the E1A-induced stabilization of p53, whereas in the late phase, E1B-55K modulates the preferential nucleocytoplasmic transport and translation of the late viral mRNAs. The mechanism(s) by which E1B-55K performs these functions has not yet been clearly elucidated. In this study, we have taken a proteomics-based approach to identify and characterize novel E1B-55K-associated proteins. A multiprotein E1B-55K-containing complex was immunopurified from Ad5-infected HeLa cells and found to contain E4-orf6, as well as several cellular factors previously implicated in the ubiquitin-proteasome-mediated destruction of proteins, including Cullin-5, Rbx1/ROC1/Hrt1, and Elongins B and C. We further demonstrate that a complex containing these as well as other proteins is capable of directing the polyubiquitination of p53 in vitro. These ubiquitin ligase components were found in a high-molecular-mass complex of 800 to 900 kDa. We propose that these newly identified binding partners (Cullin-5, Elongins B and C, and Rbx1) complex with E1B-55K and E4-orf6 during Ad infection to form part of an E3 ubiquitin ligase that targets specific protein substrates for degradation. We further suggest that E1B-55K functions as the principal substrate recognition component of this SCF-type ubiquitin ligase, whereas E4-orf6 may serve to nucleate the assembly of the complex. Lastly, we describe the identification and characterization of two novel E1B-55K interacting factors, importin-α1 and pp32, that may also participate in the functions previously ascribed to E1B-55K and E4-orf6.


The Journal of Neuroscience | 2007

FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A.

Usha Narayanan; Vijayalaxmi Nalavadi; Mika Nakamoto; David C. Pallas; Stephanie Ceman; Gary J. Bassell; Stephen T. Warren

Fragile X syndrome is a common form of inherited mental retardation and is caused by loss of fragile X mental retardation protein (FMRP), a selective RNA-binding protein that influences the translation of target messages. Here, we identify protein phosphatase 2A (PP2A) as an FMRP phosphatase and report rapid FMRP dephosphorylation after immediate group I metabotropic glutamate receptor (mGluR) stimulation (<1 min) in neurons caused by enhanced PP2A enzymatic activity. In contrast, extended mGluR activation (1–5 min) resulted in mammalian target of rapamycin (mTOR)-mediated PP2A suppression and FMRP rephosphorylation. These activity-dependent changes in FMRP phosphorylation were also observed in dendrites and showed a temporal correlation with the translational profile of select FMRP target transcripts. Collectively, these data reveal an immediate-early signaling pathway linking group I mGluR activity to rapid FMRP phosphorylation dynamics mediated by mTOR and PP2A.


Journal of Biological Chemistry | 1999

A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A.

Egon Ogris; Xianxing Du; Kasey C. Nelson; Elsa K. Mak; Xing Xian Yu; William S. Lane; David C. Pallas

Carboxymethylation of proteins is a highly conserved means of regulation in eukaryotic cells. The protein phosphatase 2A (PP2A) catalytic (C) subunit is reversibly methylated at its carboxyl terminus by specific methyltransferase and methylesterase enzymes which have been purified, but not cloned. Carboxymethylation affects PP2A activity and varies during the cell cycle. Here, we report that substitution of glutamine for either of two putative active site histidines in the PP2A C subunit results in inactivation of PP2A and formation of stable complexes between PP2A and several cellular proteins. One of these cellular proteins, herein named protein phosphatase methylesterase-1 (PME-1), was purified and microsequenced, and its cDNA was cloned. PME-1 is conserved from yeast to human and contains a motif found in lipases having a catalytic triad-activated serine as their active site nucleophile. Bacterially expressed PME-1 demethylated PP2A C subunit in vitro, and okadaic acid, a known inhibitor of the PP2A methylesterase, inhibited this reaction. To our knowledge, PME-1 represents the first mammalian protein methylesterase to be cloned. Several lines of evidence indicate that, although there appears to be a role for C subunit carboxyl-terminal amino acids in PME-1 binding, amino acids other than those at the extreme carboxyl terminus of the C subunit also play an important role in PME-1 binding to a catalytically inactive mutant.


Oncogene | 1997

Protein phosphatase 2A subunit assembly : the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen

Egon Ogris; Daryl M Gibson; David C. Pallas

The carboxy terminus of protein phosphatase 2A (PP2A) catalytic subunit is highly conserved. Seven out of the last nine residues, including two potential in vivo phosphorylation sites, threonine 304 and tyrosine 307, are completely invariant in all known PP2As. Mutational analysis of the carboxy terminus in vivo was facilitated by efficient immunoprecipitation of trimeric PP2A holoenzyme via an epitope-tagged catalytic subunit. The results indicate that the catalytic subunit carboxy terminus is important for complex formation with the PP2A 55 kDa regulatory B subunit, but not with polyomavirus oncogene, middle tumor antigen (MT), a viral B-type regulatory subunit. Replacing catalytic subunit threonine 304 or tyrosine 307 with a negatively charged amino acid abolished binding of the B subunit to the dimeric enzyme core and altered substrate specificity. Certain other amino acid substitutions of different size and/or charge also abolished or greatly reduced B subunit binding. Substitution of alanine at position 304 or phenylalanine at position 307 did not dramatically reduce B subunit binding or phosphatase activity in vitro, yet the latter substitutions are not found in naturally occurring PP2As. Thus, the wild-type residues are important for a yet unknown function in vivo. Additionally, deleting the carboxy terminal nine amino acids inhibited binding of the B subunit to the dimeric enzyme core, indicating a requirement for one or more of these amino acids for complex formation. MT interaction with the dimeric PP2A enzyme core was not inhibited by any of these mutations. Finally, unlike B subunit, MT does not activate the phosphatase activity of the PP2A heterodimer towards cdc2-phosphorylated histone H1.


The International Journal of Biochemistry & Cell Biology | 2014

STRIPAK Complexes: structure, biological function, and involvement in human diseases

Juyeon Hwang; David C. Pallas

The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK and STRIPAK-like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK and STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation.


Oncogene | 2004

Tumor suppressor WARTS ensures genomic integrity by regulating both mitotic progression and G1 tetraploidy checkpoint function.

Shin Ichi Iida; Toru Hirota; Tetsuro Morisaki; Tomotoshi Marumoto; Toshihiro Hara; Shinji Kuninaka; Shinobu Honda; Ken-ichiro Kosai; Michio Kawasuji; David C. Pallas; Hideyuki Saya

Defects in chromosomes or mitotic spindles activate the spindle checkpoint, resulting in cell cycle arrest at prometaphase. The prolonged activation of spindle checkpoint generally leads to mitotic exit without segregation after a transient mitotic arrest and the consequent formation of tetraploid G1 cells. These tetraploid cells are usually blocked to enter the subsequent S phase by the activation of p53/pRb pathway, which is referred to as the G1 tetraploidy checkpoint. A human homologue of the Drosophila warts tumor suppressor, WARTS, is an evolutionarily conserved serine–threonine kinase and implicated in development of human tumors. We previously showed that WARTS plays a crucial role in controlling mitotic progression by forming a regulatory complex with zyxin, a regulator of actin filament assembly, on mitotic apparatus. However, when WARTS is activated during cell cycle and how the loss of WARTS function leads to tumorigenesis have not been elucidated. Here we show that WARTS is activated during mitosis in mammalian cells, and that overexpression of a kinase-inactive WARTS in Rat1 fibroblasts significantly induced mitotic delay. This delay resulted from prolonged activation of the spindle assembly checkpoint and was frequently followed by mitotic slippage and the development of tetraploidy. The resulting tetraploid cells then abrogated the G1 tetraploidy checkpoint and entered S phase to achieve a DNA content of 8N. This impairment of G1 tetraploidy checkpoint was caused as a consequence of failure to induce p53 expression by expressing a kinase-inactive WARTS. WARTS thus plays a critical role in maintenance of ploidy through its actions in both mitotic progression and the G1 tetraploidy checkpoint.

Collaboration


Dive into the David C. Pallas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Egon Ogris

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge