Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David C. Rubie is active.

Publication


Featured researches published by David C. Rubie.


Icarus | 2015

Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water

David C. Rubie; Seth A. Jacobson; Alessandro Morbidelli; David P. O’Brien; Edward D. Young; J. de Vries; Francis Nimmo; H. Palme; Daniel J. Frost

Abstract In order to test accretion simulations as well as planetary differentiation scenarios, we have integrated a multistage core–mantle differentiation model with N-body accretion simulations. Impacts between embryos and planetesimals are considered to result in magma ocean formation and episodes of core formation. The core formation model combines rigorous chemical mass balance with metal–silicate element partitioning data and requires that the bulk compositions of all starting embryos and planetesimals are defined as a function of their heliocentric distances of origin. To do this, we assume that non-volatile elements are present in Solar System (CI) relative abundances in all bodies and that oxygen and H2O contents are the main compositional variables. The primary constraint on the combined model is the composition of the Earth’s primitive mantle. In addition, we aim to reproduce the composition of the martian mantle and the mass fractions of the metallic cores of Earth and Mars. The model is refined by least squares minimization with up to five fitting parameters that consist of the metal–silicate equilibration pressure and 1–4 parameters that define the starting compositions of primitive bodies. This integrated model has been applied to six Grand Tack N-body accretion simulations. Investigations of a broad parameter space indicate that: (1) accretion of Earth was heterogeneous, (2) metal–silicate equilibration pressures increase as accretion progresses and are, on average, 60–70% of core–mantle boundary pressures at the time of each impact, and (3) a large fraction (70–100%) of the metal of impactor cores equilibrates with a small fraction of the silicate mantles of proto-planets during each core formation event. Results are highly sensitive to the compositional model for the primitive starting bodies and several accretion/core-formation models can thus be excluded. Acceptable fits to the Earth’s mantle composition are obtained only when bodies that originated close to the Sun, at


Nature | 2014

Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact

Seth A. Jacobson; Alessandro Morbidelli; Sean N. Raymond; David Patrick O'Brien; Kevin J. Walsh; David C. Rubie

According to the generally accepted scenario, the last giant impact on Earth formed the Moon and initiated the final phase of core formation by melting Earth’s mantle. A key goal of geochemistry is to date this event, but different ages have been proposed. Some argue for an early Moon-forming event, approximately 30 million years (Myr) after the condensation of the first solids in the Solar System, whereas others claim a date later than 50 Myr (and possibly as late as around 100 Myr) after condensation. Here we show that a Moon-forming event at 40 Myr after condensation, or earlier, is ruled out at a 99.9 per cent confidence level. We use a large number of N-body simulations to demonstrate a relationship between the time of the last giant impact on an Earth-like planet and the amount of mass subsequently added during the era known as Late Accretion. As the last giant impact is delayed, the late-accreted mass decreases in a predictable fashion. This relationship exists within both the classical scenario and the Grand Tack scenario of terrestrial planet formation, and holds across a wide range of disk conditions. The concentration of highly siderophile elements (HSEs) in Earth’s mantle constrains the mass of chondritic material added to Earth during Late Accretion. Using HSE abundance measurements, we determine a Moon-formation age of 95 ± 32 Myr after condensation. The possibility exists that some late projectiles were differentiated and left an incomplete HSE record in Earth’s mantle. Even in this case, various isotopic constraints strongly suggest that the late-accreted mass did not exceed 1 per cent of Earth’s mass, and so the HSE clock still robustly limits the timing of the Moon-forming event to significantly later than 40 Myr after condensation.


Science | 2016

Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact

Edward D. Young; Issaku E. Kohl; Paul H. Warren; David C. Rubie; Seth A. Jacobson; Alessandro Morbidelli

Rehomogenizing the Earth-Moon system A giant impact formed the Moon, and lunar rocks provide insight into that process. Young et al. found that rocks on Earth and the Moon have identical oxygen isotopes. This suggests that well-mixed material from the giant impact must have formed both the Moon and Earths mantle. The finding also constrains the composition of the “late veneer”: material sprinkled onto Earth after the Moon-forming impact. Science, this issue p. 493 Identical oxygen isotope composition requires homogenization after the Moon-forming giant impact. Earth and the Moon are shown here to have indistinguishable oxygen isotope ratios, with a difference in Δ′17O of −1 ± 5 parts per million (2 standard error). On the basis of these data and our new planet formation simulations that include a realistic model for primordial oxygen isotopic reservoirs, our results favor vigorous mixing during the giant impact and therefore a high-energy, high-angular-momentum impact. The results indicate that the late veneer impactors had an average Δ′17O within approximately 1 per mil of the terrestrial value, limiting possible sources for this late addition of mass to the Earth-Moon system.


Geology | 2015

Why cold slabs stagnate in the transition zone

Scott D. King; Daniel J. Frost; David C. Rubie

Oceanic lithosphere sinks, stagnates, and is deflected sub-horizontally beneath western Pacific island arcs, requiring buoyancy in the slab that is inconsistent with a thermal origin. The transformation of pyroxene to majoritic garnet occurs by extremely slow diffusion, and pyroxene is therefore unlikely to transform at equilibrium pressures and temperatures in the cold interior of slabs. We present high-resolution numerical simulations showing that when slow diffusion inhibits the dissolution of pyroxene into garnet, the slab becomes buoyant relative to the ambient mantle and stagnates, whereas when the phase transformations occur in equilibrium, there is no effect on the slab. We test the model by comparing slab temperature and geometry and find that sub-horizontal slabs are more likely colder than average, consistent with our numerical simulations.


Geochimica et Cosmochimica Acta | 2003

Temperature dependence of Pt and Rh solubilities in a haplobasaltic melt

Sophie S. Fortenfant; Detlef Günther; Donald B. Dingwell; David C. Rubie

Abstract The temperature dependence of the solubilities of Pt and Rh in a haplobasaltic (anorthite-diopside 1-bar eutectic composition) melt has been investigated at 1 bar and 1300 to 1550°C using the mechanically assisted equilibration technique (Dingwell et al., 1994). The experiments were performed at almost constant oxygen fugacity (log fO2 = −2.5 ± 0.3) over the entire temperature range. Major element concentrations in the quenched glass samples were determined using an electron microprobe. Pt and Rh concentrations were obtained by laser ablation inductive coupled plasma mass spectrometry. From our data, we obtain the following expressions for the solubilities of pure Pt and pure Rh in anorthite-diopside eutectic melt at 1 bar and log fO2 = −2.5: log[Pt](ppm) =− 3320(340) T( K ) +2.0(0.2) r 2 =0.96, log[Rh](ppm )=− 5440(450) T( K ) +3.9(0.3) r 2 =0.97. Metal-silicate partition coefficients estimated from these results at likely conditions of core formation (3000 K and an oxygen fugacity 2 orders of magnitude below the iron-wustite oxygen buffer; e.g., Righter and Drake, 1997) are 6.1 × 108 and 3.9 × 106 for Pt and Rh, respectively. On the basis of these results, high temperature is not sufficient to explain the abundances of these highly siderophile elements in the Earth’s mantle as a consequence of metal-silicate equilibrium during core formation.


Science | 2016

Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation

David C. Rubie; Vera Laurenz; Seth A. Jacobson; Alessandro Morbidelli; H. Palme; Antje K. Vogel; Daniel J. Frost

Highly siderophile elements (HSEs) are strongly depleted in the bulk silicate Earth (BSE) but are present in near-chondritic relative abundances. The conventional explanation is that the HSEs were stripped from the mantle by the segregation of metal during core formation but were added back in near-chondritic proportions by late accretion, after core formation had ceased. Here we show that metal-silicate equilibration and segregation during Earth’s core formation actually increased HSE mantle concentrations because HSE partition coefficients are relatively low at the high pressures of core formation within Earth. The pervasive exsolution and segregation of iron sulfide liquid from silicate liquid (the “Hadean matte”) stripped magma oceans of HSEs during cooling and crystallization, before late accretion, and resulted in slightly suprachondritic palladium/iridium and ruthenium/iridium ratios.


Progress in Earth and Planetary Science | 2016

Impact-induced melting during accretion of the Earth

Jellie de Vries; Francis Nimmo; H. Jay Melosh; Seth A. Jacobson; Alessandro Morbidelli; David C. Rubie

Because of the high energies involved, giant impacts that occur during planetary accretion cause large degrees of melting. The depth of melting in the target body after each collision determines the pressure and temperature conditions of metal-silicate equilibration and thus geochemical fractionation that results from core-mantle differentiation. The accretional collisions involved in forming the terrestrial planets of the inner Solar System have been calculated by previous studies using N-body accretion simulations. Here we use the output from such simulations to determine the volumes of melt produced and thus the pressure and temperature conditions of metal-silicate equilibration, after each impact, as Earth-like planets accrete. For these calculations a parameterised melting model is used that takes impact velocity, impact angle and the respective masses of the impacting bodies into account. The evolution of metal-silicate equilibration pressures (as defined by evolving magma ocean depths) during Earth’s accretion depends strongly on the lifetime of impact-generated magma oceans compared to the time interval between large impacts. In addition, such results depend on starting parameters in the N-body simulations, such as the number and initial mass of embryos. Thus, there is the potential for combining the results, such as those presented here, with multistage core formation models to better constrain the accretional history of the Earth.


Earth and Planetary Science Letters | 2017

Formation, stratification, and mixing of the cores of Earth and Venus

Seth A. Jacobson; David C. Rubie; John Hernlund; Alessandro Morbidelli; Miki Nakajima

Abstract Earth possesses a persistent, internally-generated magnetic field, whereas no trace of a dynamo has been detected on Venus, at present or in the past, although a high surface temperature and recent resurfacing events may have removed paleomagnetic evidence. Whether or not a terrestrial body can sustain an internally generated magnetic field by convection inside its metallic fluid core is determined in part by its initial thermodynamic state and its compositional structure, both of which are in turn set by the processes of accretion and differentiation. Here we show that the cores of Earth- and Venus-like planets should grow with stable compositional stratification unless disturbed by late energetic impacts. They do so because higher abundances of light elements are incorporated into the liquid metal that sinks to form the core as the temperatures and pressures of metal-silicate equilibration increase during accretion. We model this process and determine that this establishes a stable stratification that resists convection and inhibits the onset of a geodynamo. However, if a late energetic impact occurs, it could mechanically stir the core creating a single homogenous region within which a long-lasting geodynamo would operate. While Earths accretion has been punctuated by a late giant impact with likely enough energy to mix the core (e.g. the impact that formed the Moon), we hypothesize that the accretion of Venus is characterized by the absence of such energetic giant impacts and the preservation of its primordial stratifications.


arXiv: Earth and Planetary Astrophysics | 2016

Mechanisms and Geochemical Models of Core Formation

David C. Rubie; Seth A. Jacobson

The formation of the Earths core is a consequence of planetary accretion and processes in the Earths interior. The mechanical process of planetary differentiation is likely to occur in large, if not global, magma oceans created by the collisions of planetary embryos. Metal-silicate segregation in magma oceans occurs rapidly and efficiently unlike grain scale percolation according to laboratory experiments and calculations. Geochemical models of the core formation process as planetary accretion proceeds are becoming increasingly realistic. Single stage and continuous core formation models have evolved into multi-stage models that are couple to the output of dynamical models of the giant impact phase of planet formation. The models that are most successful in matching the chemical composition of the Earths mantle, based on experimentally-derived element partition coefficients, show that the temperature and pressure of metal-silicate equilibration must increase as a function of time and mass accreted and so must the oxygen fugacity of the equilibrating material. The latter can occur if silicon partitions into the core and through the late delivery of oxidized material. Coupled dynamical accretion and multi-stage core formation models predict the evolving mantle and core compositions of all the terrestrial planets simultaneously and also place strong constraints on the bulk compositions and oxidation states of primitive bodies in the protoplanetary disk.


Earth and Planetary Science Letters | 2011

Heterogeneous accretion, composition and core-mantle differentiation of the Earth

David C. Rubie; Daniel J. Frost; Ute Mann; Yuki Asahara; Francis Nimmo; Kyusei Tsuno; Philip Kegler; Astrid Holzheid; H. Palme

Collaboration


Dive into the David C. Rubie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Morbidelli

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Palme

University of Cologne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis Nimmo

University of California

View shared research outputs
Top Co-Authors

Avatar

Alessandro Morbidelli

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge