Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David C. Sandeman is active.

Publication


Featured researches published by David C. Sandeman.


The Journal of Comparative Neurology | 2007

Adult Neurogenesis: A Common Strategy Across Diverse Species

Jeremy M. Sullivan; Jeanne L. Benton; David C. Sandeman; Barbara S. Beltz

Adult neurogenesis, the generation of new neurons from adult precursor cells, occurs in the brains of a phylogenetically diverse array of animals. In the higher (amniotic) vertebrates, these precursor cells are glial cells that reside within specialized regions, known as neurogenic niches, the elements of which both support and regulate neurogenesis. The in vivo identity and location of the precursor cells responsible for adult neurogenesis in nonvertebrate taxa, however, remain largely unknown. Among the invertebrates, adult neurogenesis has been particularly well characterized in freshwater crayfish (Arthropoda, Crustacea), although the identity of the precursor cells sustaining continuous neuronal proliferation in these animals has yet to be established. Here we provide evidence suggesting that, as in the higher vertebrates, the precursor cells maintaining adult neurogenesis in the crayfish Procambarus clarkii are glial cells. These precursor cells reside within a specialized region, or niche, on the ventral surface of the brain, and their progeny migrate from this niche along glial fibers and then proliferate to form new neurons in the central olfactory pathway. The niche in which these precursor cells reside has many features in common with the neurogenic niches of higher vertebrates. These commonalities include: glial cells functioning as both precursor and support cells, directed migration, close association with the brain vasculature, and specialized basal laminae. The cellular machinery maintaining adult neurogenesis appears, therefore, to be shared by widely disparate taxa. These extensive structural and functional parallels suggest a common strategy for the generation of new neurons in adult brains. J. Comp. Neurol. 500:574–584, 2007.


The Journal of Comparative Neurology | 2003

Ecological, evolutionary, and functional correlates of sensilla number and glomerular density in the olfactory system of decapod crustaceans

Barbara S. Beltz; Kashka Kordas; Monaya M. Lee; Jennifer B. Long; Jeanne L. Benton; David C. Sandeman

One of the features common among olfactory systems for vertebrate and invertebrate species is the division of the primary processing area into distinct clumps of synaptic neuropil, called glomeruli. The olfactory glomeruli appear to serve as functional units of olfaction and are the location of the primary processing between chemosensory afferents and second‐order neurons. Although glomeruli are found across all phyla, their numbers and size appear to be characteristic for each species, giving rise to the speculation that there is a relationship between glomerular number and function. It has been hypothesized, for example, that animals with more glomeruli may be able to resolve a wider range of odors. Crustacean species are distributed among freshwater, marine, and terrestrial habitats in arctic, temperate, and tropical climates. They also exhibit a variety of lifestyles and behaviors in which olfaction may play a dominant role. Feeding, for example, ranges from carnivorous, through subaquatic and terrestrial omnivorous scavenging, to filter feeding. Mating and territorial behaviors also are known to involve chemical signals. The current study examines glomerular numbers in the olfactory lobes of 17 crustacean species from six of the seven taxa now included in the reptantian decapods. Estimates of the glomerular numbers were obtained from the analysis of sectioned material treated immunocytochemically with an antibody against synapsin that labels proteins contained in neuronal terminals. The numbers of glomeruli found in the different species were then compared with the volume of the glomerular neuropil, numbers of olfactory sensilla, life styles, habitat, and phylogenetic affinities. The picture that emerges from these correlations is that the decapod crustaceans have exploited various strategies in the construction of their olfactory systems in which the problems of size, sensitivity, and selectivity have all interacted. We find a continuum across the groups ranging from those that favor a high convergence of receptor neurons onto a few glomeruli to those that share a small number of receptor neurons among many glomeruli. The potential functional consequences of these differences are discussed. J. Comp. Neurol. 455:260–269, 2003.


Arthropod Structure & Development | 2003

Regulation of life-long neurogenesis in the decapod crustacean brain

Barbara S. Beltz; David C. Sandeman

This article provides an overview of our understanding of life-long neurogenesis in the decapod crustacean brain, where the proliferation of sensory and interneurons is controlled by many of the same factors as is neurogenesis in the mammalian brain. The relative simplicity, spatial organization and accessibility of the crustacean brain provide opportunities to examine specific neuronal pathways that regulate neurogenesis and the sequence of gene expression that leads to neuronal differentiation.


Developmental Neurobiology | 2009

Adult neurogenesis in the crayfish brain: Proliferation, migration, and possible origin of precursor cells

Yi Zhang; Silvana Allodi; David C. Sandeman; Barbara S. Beltz

The birth of new neurons and their incorporation into functional circuits in the adult brain is a characteristic of many vertebrate and invertebrate organisms, including decapod crustaceans. Precursor cells maintaining life‐long proliferation in the brains of crayfish (Procambarus clarkii, Cherax destructor) and clawed lobsters (Homarus americanus) reside within a specialized niche on the ventral surface of the brain; their daughters migrate to two proliferation zones along a stream formed by processes of the niche precursors. Here they divide again, finally producing interneurons in the olfactory pathway. The present studies in P. clarkii explore (1) differential proliferative activity among the niche precursor cells with growth and aging, (2) morphological characteristics of cells in the niche and migratory streams, and (3) aspects of the cell cycle in this lineage. Morphologically symmetrical divisions of neuronal precursor cells were observed in the niche near where the migratory streams emerge, as well as in the streams and proliferation zones. The nuclei of migrating cells elongate and undergo shape changes consistent with nucleokinetic movement. LIS1, a highly conserved dynein‐binding protein, is expressed in cells in the migratory stream and neurogenic niche, implicating this protein in the translocation of crustacean brain neuronal precursor cells. Symmetrical divisions of the niche precursors and migration of both daughters raised the question of how the niche precursor pool is replenished. We present here preliminary evidence for an association between vascular cells and the niche precursors, which may relate to the life‐long growth and maintenance of the crustacean neurogenic niche.


Journal of Molecular Histology | 2007

Adult neurogenesis and cell cycle regulation in the crustacean olfactory pathway: from glial precursors to differentiated neurons

Jeremy M. Sullivan; David C. Sandeman; Jeanne L. Benton; Barbara S. Beltz

Adult neurogenesis is a characteristic feature of the olfactory pathways of decapod crustaceans. In crayfish and clawed lobsters, adult-born neurons are the progeny of precursor cells with glial characteristics located in a neurogenic niche on the ventral surface of the brain. The daughters of these precursor cells migrate during S and G2 stages of the cell cycle along glial fibers to lateral (cluster 10) and medial (cluster 9) proliferation zones. Here, they divide (M phase) producing offspring that differentiate into olfactory interneurons. The complete lineage of cells producing neurons in these animals, therefore, is arranged along the migratory stream according to cell cycle stage. We have exploited this model to examine the influence of environmental and endogenous factors on adult neurogenesis. We find that increased levels of serotonin upregulate neuronal production, as does maintaining animals in an enriched (versus deprived) environment or augmenting their diet with omega-3 fatty acids; increased levels of nitric oxide, on the other hand, decrease the rate of neurogenesis. The features of the neurogenic niche and migratory streams, and the fact that these continue to function in vitro, provide opportunities unavailable in other organisms to explore the sequence of cellular and molecular events leading to the production of new neurons in adult brains.


Chronobiology International | 2009

Brain photoreceptor pathways contributing to circadian rhythmicity in crayfish.

Jeremy M. Sullivan; Maria C. Genco; Elizabeth D. Marlow; Jeanne L. Benton; Barbara S. Beltz; David C. Sandeman

Freshwater crayfish have three known photoreceptive systems: the compound eyes, extraretinal brain photoreceptors, and caudal photoreceptors. The primary goal of the work described here was to explore the contribution of the brain photoreceptors to circadian locomotory activity and define some of the underlying neural pathways. Immunocytochemical studies of the brain photoreceptors in the parastacid (southern hemisphere) crayfish Cherax destructor reveal their expression of the blue light-sensitive photopigment cryptochrome and the neurotransmitter histamine. The brain photoreceptors project to two small protocerebral neuropils, the brain photoreceptor neuropils (BPNs), where they terminate among fibers expressing the neuropeptide pigment-dispersing hormone (PDH), a signaling molecule in arthropod circadian systems. Comparable pathways are also described in the astacid (northern hemisphere) crayfish Procambarus clarkii. Despite exhibiting markedly different diurnal locomotor activity rhythms, removal of the compound eyes and caudal photoreceptors in both C. destructor and P. clarkii (leaving the brain photoreceptors intact) does not abolish the normal light/dark activity cycle in either species, nor prevent the entrainment of their activity cycles to phase shifts of the light/dark period. These results suggest, therefore, that crayfish brain photoreceptors are sufficient for the entrainment of locomotor activity rhythms to photic stimuli, and that they can act in the absence of the compound eyes and caudal photoreceptors. We also demonstrate that the intensity of PDH expression in the BPNs varies in phase with the locomotor activity rhythm of both crayfish species. Together, these findings suggest that the brain photoreceptor cells can function as extraretinal circadian photoreceptors and that the BPN represents part of an entrainment pathway synchronizing locomotor activity to environmental light/dark cycles, and implicating the neuropeptide PDH in these functions. (Author correspondence: [email protected])


Developmental Dynamics | 2007

Nitric oxide in the crustacean brain: Regulation of neurogenesis and morphogenesis in the developing olfactory pathway

J.L. Benton; David C. Sandeman; Barbara S. Beltz

Nitric oxide (NO) plays major roles during development and in adult organisms. We examined the temporal and spatial patterns of nitric oxide synthase (NOS) appearance in the embryonic lobster brain to localize sources of NO activity; potential NO targets were identified by defining the distribution of NO‐induced cGMP. Staining patterns are compared with NOS and cyclic 3,5 guanosine monophosphate (cGMP) distribution in adult lobster brains. Manipulation of NO levels influences olfactory glomerular formation and stabilization, as well as levels of neurogenesis among the olfactory projection neurons. In the first 2 days following ablation of the lateral antennular flagella in juvenile lobsters, a wave of increased NOS immunoreactivity and a reduction in neurogenesis occur. These studies implicate nitric oxide as a developmental architect and also support a role for this molecule in the neural response to injury in the olfactory pathway. Developmental Dynamics 236:3047–3060, 2007.


The Journal of Experimental Biology | 2004

Regulation of serotonin levels by multiple light-entrainable endogenous rhythms

M. Wildt; Erin M. Goergen; J.L. Benton; David C. Sandeman; Barbara S. Beltz

SUMMARY This study examined whether serotonin levels in the brain of the American lobster, Homarus americanus, are under circadian control. Using high-performance liquid chromatography and semi-quantitative immunocytochemical methods, we measured serotonin levels in the brains of lobsters at six time points during a 24-h period. Lobsters were maintained for 2 weeks on a 12 h:12 h light:dark cycle followed by 3 days of constant darkness. Under these conditions, brain serotonin levels varied rhythmically, with a peak before subjective dusk and a trough before subjective dawn. This persistent circadian rhythm in constant darkness indicates that serotonin levels are controlled by an endogenous clock. Animals exposed to a shifted light cycle for >10 days, followed by 3 days in constant darkness, demonstrate that this rhythm is light entrainable. Separate analyses of two pairs of large deutocerebral neuropils, the accessory and olfactory lobes, show that serotonin levels in these functionally distinct areas also exhibit circadian rhythms but that these rhythms are out of phase with one another. The olfactory and accessory lobe rhythms are also endogenous and light entrainable, suggesting the presence of multiple clock mechanisms regulating serotonin levels in different brain regions.


European Journal of Neuroscience | 2011

Adult neurogenesis in the decapod crustacean brain: a hematopoietic connection?

Barbara S. Beltz; Yi Zhang; Jeanne L. Benton; David C. Sandeman

New neurons are produced and integrated into circuits in the adult brains of many organisms, including crustaceans. In some crustacean species, the first‐generation neuronal precursors reside in a niche exhibiting characteristics analogous to mammalian neurogenic niches. However, unlike mammalian niches where several generations of neuronal precursors co‐exist, the lineage of precursor cells in crayfish is spatially separated allowing the influence of environmental and endogenous regulators on specific generations in the neuronal precursor lineage to be defined. Experiments also demonstrate that the first‐generation neuronal precursors in the crayfish Procambarus clarkii are not self‐renewing. A source external to the neurogenic niche must therefore provide cells that replenish the first‐generation precursor pool, because although these cells divide and produce a continuous efflux of second‐generation cells from the niche, the population of first‐generation niche precursors is not diminished with growth and aging. In vitro studies show that cells extracted from the hemolymph, but not other tissues, are attracted to and incorporated into the neurogenic niche, a phenomenon that appears to involve serotonergic mechanisms. We propose that, in crayfish, the hematopoietic system may be a source of cells that replenish the niche cell pool. These and other studies reviewed here establish decapod crustaceans as model systems in which the processes underlying adult neurogenesis, such as stem cell origins and transformation, can be readily explored. Studies in diverse species where adult neurogenesis occurs will result in a broader understanding of fundamental mechanisms and how evolutionary processes may have shaped the vertebrate/mammalian condition.


Developmental Neurobiology | 2009

An identified serotonergic neuron regulates adult neurogenesis in the crustacean brain.

David C. Sandeman; J.L. Benton; Barbara S. Beltz

New neurons are born and integrated into functional circuits in the brains of many adult organisms. In virtually all of these systems, serotonin is a potent regulator of neuronal proliferation. Specific neural pathways underlying these serotonergic influences have not, however, been identified and manipulated. The goal of this study was to test whether adult neurogenesis in the crustacean brain is influenced by electrical activity in the serotonergic dorsal giant neurons (DGNs) innervating the primary olfactory processing areas, the olfactory lobes, and higher order centers, the accessory lobes. Adult‐born neurons occur in two interneuronal cell clusters that are part of the olfactory pathway. This study demonstrates that neurogenesis also continues in these areas in a dissected, perfused brain preparation, although the rate of neuronal production is lower than in brains from intact same‐sized animals. Inclusion of 10−9 M serotonin in the perfusate delivered to the dissected brain preparation restores the rate of neurogenesis to in vivo levels. Although subthreshold stimulation of the DGN does not significantly alter the rate of neurogenesis, electrical activation of a single DGN results in significant increases in neurogenesis in Cluster 10 on the same side of the brain, when compared with levels on the contralateral, unstimulated side. Measurements of serotonin levels in the perfusate using high‐performance liquid chromatography established that serotonin levels are elevated about 10‐fold during DGN stimulation, confirming that serotonin is released during DGN activity. This is the first identified neural pathway through which adult neurogenesis has been directly manipulated.

Collaboration


Dive into the David C. Sandeman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge