David C. Schultz
Wistar Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David C. Schultz.
Oncogene | 1998
David E. Jensen; Monja L. Proctor; Sandra T. Marquis; Heather Perry Gardner; Seung I. Ha; Lewis A. Chodosh; Alexander M. Ishov; Niels Tommerup; Henrik Vissing; Yoshitaka Sekido; John D. Minna; Anna Borodovsky; David C. Schultz; Keith D. Wilkinson; Gerd G. Maul; Nickolai A. Barlev; Shelley L. Berger; George C. Prendergast; Frank J. Rauscher
We have identified a novel protein, BAP1, which binds to the RING finger domain of the Breast/Ovarian Cancer Susceptibility Gene product, BRCA1. BAP1 is a nuclear-localized, ubiquitin carboxy-terminal hydrolase, suggesting that deubiquitinating enzymes may play a role in BRCA1 function. BAP1 binds to the wild-type BRCA1-RING finger, but not to germline mutants of the BRCA1-RING finger found in breast cancer kindreds. BAP1 and BRCA1 are temporally and spatially co-expressed during murine breast development and remodeling, and show overlapping patterns of subnuclear distribution. BAP1 resides on human chromosome 3p21.3; intragenic homozgyous rearrangements and deletions of BAP1 have been found in lung carcinoma cell lines. BAP1 enhances BRCA1-mediated inhibition of breast cancer cell growth and is the first nuclear-localized ubiquitin carboxy-terminal hydrolase to be identified. BAP1 may be a new tumor suppressor gene which functions in the BRCA1 growth control pathway.
Molecular and Cellular Biology | 1999
Robert Ryan; David C. Schultz; Kasirajan Ayyanathan; Prim B. Singh; Josh R. Friedman; William J. Fredericks; Frank J. Rauscher
ABSTRACT Krüppel-associated box (KRAB) domains are present in approximately one-third of all human zinc finger proteins (ZFPs) and are potent transcriptional repression modules. We have previously cloned a corepressor for the KRAB domain, KAP-1, which is required for KRAB-mediated repression in vivo. To characterize the repression mechanism utilized by KAP-1, we have analyzed the ability of KAP-1 to interact with murine (M31 and M32) and human (HP1α and HP1γ) homologues of the HP1 protein family, a class of nonhistone heterochromatin-associated proteins with a well-established epigenetic gene silencing function in Drosophila. In vitro studies confirmed that KAP-1 is capable of directly interacting with M31 and hHP1α, which are normally found in centromeric heterochromatin, as well as M32 and hHP1γ, both of which are found in euchromatin. Mapping of the region in KAP-1 required for HP1 interaction showed that amino acid substitutions which abolish HP1 binding in vitro reduce KAP-1 mediated repression in vivo. We observed colocalization of KAP-1 with M31 and M32 in interphase nuclei, lending support to the biochemical evidence that M31 and M32 directly interact with KAP-1. The colocalization of KAP-1 with M31 is sometimes found in subnuclear territories of potential pericentromeric heterochromatin, whereas colocalization of KAP-1 and M32 occurs in punctate euchromatic domains throughout the nucleus. This work suggests a mechanism for the recruitment of HP1-like gene products by the KRAB-ZFP–KAP-1 complex to specific loci within the genome through formation of heterochromatin-like complexes that silence gene activity. We speculate that gene-specific repression may be a consequence of the formation of such complexes, ultimately leading to silenced genes in newly formed heterochromatic chromosomal environments.
Nature Medicine | 2015
Benjamin G. Bitler; Katherine M. Aird; Azat Garipov; Hua Li; Michael D. Amatangelo; Andrew V. Kossenkov; David C. Schultz; Qin Liu; Ie Ming Shih; Jose R. Conejo-Garcia; David W. Speicher; Rugang Zhang
ARID1A, a chromatin remodeler, shows one of the highest mutation rates across many cancer types. Notably, ARID1A is mutated in over 50% of ovarian clear cell carcinomas, which currently has no effective therapy. To date, clinically applicable targeted cancer therapy based on ARID1A mutational status has not been described. Here we show that inhibition of the EZH2 methyltransferase acts in a synthetic lethal manner in ARID1A mutated ovarian cancer cells. ARID1A mutational status correlates with response to the EZH2 inhibitor. We identified PIK3IP1 as a direct ARID1A/EZH2 target, which is upregulated by EZH2 inhibition and contributes to the observed synthetic lethality by inhibiting PI3K/AKT signaling. Significantly, EZH2 inhibition causes regression of ARID1A mutated ovarian tumors in vivo. Together, these data demonstrate for the first time a synthetic lethality between ARID1A mutation and EZH2 inhibition. They indicate that pharmacological inhibition of EZH2 represents a novel treatment strategy for ARID1A mutated cancers.The gene encoding ARID1A, a chromatin remodeler, shows one of the highest mutation rates across many cancer types. Notably, ARID1A is mutated in over 50% of ovarian clear cell carcinomas, which currently have no effective therapy. To date, clinically applicable targeted cancer therapy based on ARID1A mutational status has not been described. Here we show that inhibition of the EZH2 methyltransferase acts in a synthetic lethal manner in ARID1A-mutated ovarian cancer cells and that ARID1A mutational status correlated with response to the EZH2 inhibitor. We identified PIK3IP1 as a direct target of ARID1A and EZH2 that is upregulated by EZH2 inhibition and contributed to the observed synthetic lethality by inhibiting PI3K–AKT signaling. Importantly, EZH2 inhibition caused regression of ARID1A-mutated ovarian tumors in vivo. To our knowledge, this is the first data set to demonstrate a synthetic lethality between ARID1A mutation and EZH2 inhibition. Our data indicate that pharmacological inhibition of EZH2 represents a novel treatment strategy for cancers involving ARID1A mutations.
Molecular Cell | 2011
Dominique Ray-Gallet; Adam Woolfe; Isabelle Vassias; Céline Pellentz; Nicolas Lacoste; Aastha Puri; David C. Schultz; Nikolay A. Pchelintsev; Peter D. Adams; Lars E. T. Jansen; Geneviève Almouzni
Establishment of a proper chromatin landscape is central to genome function. Here, we explain H3 variant distribution by specific targeting and dynamics of deposition involving the CAF-1 and HIRA histone chaperones. Impairing replicative H3.1 incorporation via CAF-1 enables an alternative H3.3 deposition at replication sites via HIRA. Conversely, the H3.3 incorporation throughout the cell cycle via HIRA cannot be replaced by H3.1. ChIP-seq analyses reveal correlation between HIRA-dependent H3.3 accumulation and RNA pol II at transcription sites and specific regulatory elements, further supported by their biochemical association. The HIRA complex shows unique DNA binding properties, and depletion of HIRA increases DNA sensitivity to nucleases. We propose that protective nucleosome gap filling of naked DNA by HIRA leads to a broad distribution of H3.3, and HIRA association with Pol II ensures local H3.3 enrichment at specific sites. We discuss the importance of this H3.3 deposition as a salvage pathway to maintain chromatin integrity.
The EMBO Journal | 2001
Allan D. Capili; David C. Schultz; Frank J. Rauscher; Katherine L. B. Borden
Plant homeodomain (PHD) domains are found in >400 eukaryotic proteins, many of which are transcriptional regulators. Naturally occurring point mutations or deletions of this domain contribute to a variety of human diseases, including ATRX syndrome, myeloid leukemias and autoimmune dysfunction. Here we report the first structural characterization of a PHD domain. Our studies reveal that the PHD domain from KAP‐1 corepressor binds zinc in a cross‐brace topology between anti‐parallel β‐strands reminiscent of RING (really interesting new gene) domains. Using a mutational analysis, we define the structural features required for transcriptional repression by KAP‐1 and explain naturally occurring, disease‐causing mutations in PHD domains of other proteins. From a comparison of this PHD structure with previously reported RING and LIM (Lin11/Isl‐1/Mec‐3) structures, we infer sequence determinants that allow discrimination among PHD, RING and LIM motifs.
Journal of Biological Chemistry | 2007
Xu Li; Yung Kang Lee; Jen Chong Jeng; Yun Yen; David C. Schultz; Hsiu-Ming Shih; David K. Ann
As a multifunctional protein, KRAB domain-associated protein 1 (KAP1) is reportedly subjected to multiple protein posttranslational modifications, including phosphorylation and sumoylation. However, gaps exist in our knowledge of how KAP1 phosphorylation cross-talks with KAP1 sumoylation and what the biological consequence is. Here, we show that doxorubicin (Dox) treatment induces KAP1 phosphorylation at Ser-824 via an ataxia telangiectasia mutated (ATM)-dependent manner, correlating with the transcriptional de-repression of p21WAF1/CIP1 and Gadd45α. A S824A substitution of KAP1, which ablates the ATM-induced phosphorylation, results in an increase of KAP1 sumoylation and repression of p21 transcription in Dox-treated cells. By contrast, a S824D mutation of KAP1, which mimics constitutive phosphorylation of KAP1, leads to a decrease of KAP1 sumoylation and stimulation of p21 transcription before the exposure of Dox. We further provide evidence that SENP1 deSUMOylase is involved in activating basal, but not Dox-induced, KAP1 Ser-824 phosphorylation, rendering a stimulation of p21 and Gadd45α transcription. Moreover, KAP1 and differential sumoylation of KAP1 were also demonstrated to fine-tune the transcription of three additional KAP1-targeted genes, including Bax, Puma, and Noxa. Taken together, our results suggest a novel role for ATM that selectively stimulates KAP1 Ser-824 phosphorylation to repress its sumoylation, leading to the de-repression of expression of a subset of genes involved in promoting cell cycle control and apoptosis in response to genotoxic stresses.
Oncogene | 1997
Abbas Abdollahi; David Roberts; Andrew K. Godwin; David C. Schultz; Gonosuke Sonoda; Joseph R. Testa; Thomas C. Hamilton
We have used a rat model of epithelial ovarian cancer to identify a gene that shows decreased or lost expression in independently transformed rat ovarian surface epithelial cell lines compared to the normal progenitor cells. Hence, we refer to this gene as Lot-1 (Lost on transformation 1, GenBank accession no. U72620). Here, we report the cloning of the likely human homologue and its initial characterization. The deduced amino acid sequences of the cDNAs for rat and human LOT-1 (GenBank accession no. U72621) contain seven zinc finger motifs of the C2H2 type as well as proline and glutamine rich areas. The genes share 76.4% identity at the nucleotide level, 67.7% at the amino acid level and 85.5% within the seven zinc finger motifs. LOT-1 is ubiquitously expressed in normal human tissues but was not expressed in four of 11 (36%) human ovarian cancer cell lines or spontaneously transformed human ovarian surface epithelial cells. The human gene maps to chromosome 6 at band q25. We show that there is a 38% incidence of allelic loss at this chromosomal location in human ovarian cancers. This chromosomal region has also been implicated in the genesis of breast, kidney, and pleural mesothelial cancers. We suggest that this newly identified gene is not only of intrinsic interest as a ubiquitously expressed probable transcription factor but is a plausible candidate for the tumor suppressor gene which likely resides in the region of chromosome 6 defined by band q25.
Cell Reports | 2013
Jessie Villanueva; Jeffrey R. Infante; Clemens Krepler; Patricia Reyes-Uribe; Minu Samanta; Hsin-Yi Chen; Bin Li; Rolf Swoboda; Melissa Wilson; Adina Vultur; Mizuho Fukunaba-Kalabis; Bradley Wubbenhorst; Thomas Y. Chen; Qin Liu; Katrin Sproesser; Douglas J. DeMarini; Tona M. Gilmer; Anne-Marie Martin; Ronen Marmorstein; David C. Schultz; David W. Speicher; Giorgos C. Karakousis; Wei Xu; Ravi K. Amaravadi; Xiaowei Xu; Lynn M. Schuchter; Meenhard Herlyn; Katherine L. Nathanson
Although BRAF and MEK inhibitors have proven clinical benefits in melanoma, most patients develop resistance. We report a de novo MEK2-Q60P mutation and BRAF gain in a melanoma from a patient who progressed on the MEK inhibitor trametinib and did not respond to the BRAF inhibitor dabrafenib. We also identified the same MEK2-Q60P mutation along with BRAF amplification in a xenograft tumor derived from a second melanoma patient resistant to the combination of dabrafenib and trametinib. Melanoma cells chronically exposed to trametinib acquired concurrent MEK2-Q60P mutation and BRAF-V600E amplification, which conferred resistance to MEK and BRAF inhibitors. The resistant cells had sustained MAPK activation and persistent phosphorylation of S6K. A triple combination of dabrafenib, trametinib, and the PI3K/mTOR inhibitor GSK2126458 led to sustained tumor growth inhibition. Hence, concurrent genetic events that sustain MAPK signaling can underlie resistance to both BRAF and MEK inhibitors, requiring novel therapeutic strategies to overcome it.
Molecular and Cellular Biology | 2009
Gowrishankar Banumathy; Neeta Somaiah; Rugang Zhang; Yong Tang; Jason Hoffmann; Mark Andrake; Hugo Ceulemans; David C. Schultz; Ronen Marmorstein; Peter D. Adams
ABSTRACT Cellular senescence is an irreversible proliferation arrest, tumor suppression process and likely contributor to tissue aging. Senescence is often characterized by domains of facultative heterochromatin, called senescence-associated heterochromatin foci (SAHF), which repress expression of proliferation-promoting genes. Given its likely contribution to tumor suppression and tissue aging, it is essential to identify all components of the SAHF assembly pathway. Formation of SAHF in human cells is driven by a complex of histone chaperones, namely, HIRA and ASF1a. In yeast, the complex orthologous to HIRA/ASF1a contains two additional proteins, Hpc2p and Hir3p. Using a sophisticated approach to search for remote orthologs conserved in multiple species through evolution, we identified the HIRA-associated proteins, UBN1 and UBN2, as candidate human orthologs of Hpc2p. We show that the Hpc2-related domain of UBN1, UBN2, and Hpc2p is an evolutionarily conserved HIRA/Hir-binding domain, which directly interacts with the N-terminal WD repeats of HIRA/Hir. UBN1 binds to proliferation-promoting genes that are repressed by SAHF and associates with histone methyltransferase activity that methylates lysine 9 of histone H3, a site that is methylated in SAHF. UBN1 is indispensable for formation of SAHF. We conclude that UBN1 is an ortholog of yeast Hpc2p and a novel regulator of senescence.
Nature Structural & Molecular Biology | 2011
Jasmine S. Smith; Qijun Chen; Liliya A. Yatsunyk; John M. Nicoludis; Mark S Garcia; Ramon Kranaster; Shankar Balasubramanian; David Monchaud; Marie-Paule Teulade-Fichou; Lara K. Abramowitz; David C. Schultz; F. Brad Johnson
Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA–stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3′ overhang inhibits 5′→3′ resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo.