Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David C. Wilcockson is active.

Publication


Featured researches published by David C. Wilcockson.


The Journal of Neuroscience | 2005

Central and Systemic Endotoxin Challenges Exacerbate the Local Inflammatory Response and Increase Neuronal Death during Chronic Neurodegeneration

Colm Cunningham; David C. Wilcockson; Suzanne Campion; Katie Lunnon; V. Hugh Perry

The contribution of inflammation to the progression of neurodegenerative diseases such as Alzheimers, Parkinsons, and prion diseases is poorly understood. Brain inflammation in animal models of these diseases is dominated by chronic microglial activation with minimal proinflammatory cytokine expression. However, these inflammatory cells are “primed” to produce exaggerated inflammatory responses to subsequent lipopolysaccharide (LPS) challenges. We show that, using the ME7 model of prion disease, intracerebral challenge with LPS results in dramatic interleukin-1β (IL-1β) expression, neutrophil infiltration, and inducible nitric oxide synthase expression in the brain parenchyma of prion-diseased mice compared with the same challenge in normal mice. Systemic inflammation evoked by LPS also produced greater increases in proinflammatory cytokines, pentraxin 3, and inducible nitric oxide synthase transcription in prion-diseased mice than in control mice and induced microglial expression of IL-1β. These systemic challenges also increased neuronal apoptosis in the brains of ME7 animals. Thus, both central and peripheral inflammation can exacerbate local brain inflammation and neuronal death. The finding that a single acute systemic inflammatory event can induce neuronal death in the CNS has implications for therapy in neurodegenerative diseases.


Journal of Cerebral Blood Flow and Metabolism | 2002

The systemic and local acute phase response following acute brain injury.

David C. Wilcockson; Sandra J. Campbell; Daniel C. Anthony; V. Hugh Perry

It is not known whether acute brain injury results in a systemic acute phase response (APR) or whether an APR influences outcome after an insult to the CNS. The present study sought to establish whether brain injury elicits a systemic or local APR. The expression of acute phase protein (APP) mRNA in liver and brain tissues was measured by Taqman reverse transcriptase-polymerase chain reaction after an excitotoxic lesion in the striatum or challenge with a proinflammatory cytokine. N-methyl-D-aspartate (NMDA)–induced brain lesion did not elicit a systemic APR. In contrast, proinflammatory challenge with mouse recombinant interleukin-1β (mrIL-1β) resulted in a significant hepatic APP mRNA expression within 6 hours. Thus, an inflammatory challenge that results in a meningitis leads to a hepatic APR, whereas acute brain injury alone, with no evidence of a meningitis, does not produce an APR. This is surprising because NMDA leads to an increase in endogenous IL-1β synthesis. This suggests that the brain has an endogenous antiinflammatory mechanism, which protects against the spread of inflammation after an acute injury. In the brain, both excitotoxic lesions and proinflammatory challenge resulted in a profound parenchymal upregulation of APP mRNA after 6 and 12 hours in the injected hemisphere. These results suggest that the local APR may play a role as an antiinflammatory mechanism. These findings indicate a potentially pivotal role for peripheral and local APP production on outcome after brain injury.


Current Biology | 2013

Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra

Lin Zhang; Michael H. Hastings; Edward W. Green; Eran Tauber; Martin Sládek; Simon G. Webster; Charalambos P. Kyriacou; David C. Wilcockson

Summary Background Tidal (12.4 hr) cycles of behavior and physiology adapt intertidal organisms to temporally complex coastal environments, yet their underlying mechanism is unknown. However, the very existence of an independent “circatidal” clock has been disputed, and it has been argued that tidal rhythms arise as a submultiple of a circadian clock, operating in dual oscillators whose outputs are held in antiphase i.e., ∼12.4 hr apart. Results We demonstrate that the intertidal crustacean Eurydice pulchra (Leach) exhibits robust tidal cycles of swimming in parallel to circadian (24 hr) rhythms in behavioral, physiological and molecular phenotypes. Importantly, ∼12.4 hr cycles of swimming are sustained in constant conditions, they can be entrained by suitable stimuli, and they are temperature compensated, thereby meeting the three criteria that define a biological clock. Unexpectedly, tidal rhythms (like circadian rhythms) are sensitive to pharmacological inhibition of Casein kinase 1, suggesting the possibility of shared clock substrates. However, cloning the canonical circadian genes of E. pulchra to provide molecular markers of circadian timing and also reagents to disrupt it by RNAi revealed that environmental and molecular manipulations that confound circadian timing do not affect tidal timing. Thus, competent circadian timing is neither an inevitable nor necessary element of tidal timekeeping. Conclusions We demonstrate that tidal rhythms are driven by a dedicated circatidal pacemaker that is distinct from the circadian system of E. pulchra, thereby resolving a long-standing debate regarding the nature of the circatidal mechanism.


Journal of Neurochemistry | 2002

Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1beta-induced neutrophil recruitment.

Sandra J. Campbell; David C. Wilcockson; Angus G. Butchart; V. Hugh Perry; Daniel C. Anthony

The pattern of neutrophil recruitment that accompanies inflammation in the CNS depends on the site of injury and the stage of development. The adult brain parenchyma is refractory to neutrophil recruitment and associated damage as compared to the spinal cord or juvenile brain. Using quantitative Taqman RT–PCR and enzyme‐liked immunosorbent assay (ELISA), we compared mRNA and protein expression of the rat neutrophil chemoattractant chemokines (CINC) in spinal cord and brain of adult and juvenile rats to identify possible association with the observed differences in neutrophil recruitment. Interleukin‐1β (IL‐1β) injection resulted in up‐regulated chemokine expression in both brain and spinal cord. CINC‐3 mRNA was elevated above CINC‐1 and CINC‐2α, with expression levels for each higher in spinal cord than in brain. By ELISA, IL‐1β induced greater CINC‐1 and CINC‐2α expression compared to CINC‐3, with higher protein levels in spinal cord than in brain. In the juvenile brain, significantly higher levels of CINC‐2α protein were observed in response to IL‐1β injection than in the adult brain following an equivalent challenge. Correspondingly, neutrophil recruitment was observed in the juvenile brain and adult spinal cord, but not in the adult brain. No expression of CINC‐2β mRNA was detected. Thus differential chemokine induction may contribute to variations in neutrophil recruitment in during development and between the different CNS compartments.


Journal of Virology | 2005

Comparison of Inflammatory and Acute-Phase Responses in the Brain and Peripheral Organs of the ME7 Model of Prion Disease

Colm Cunningham; David C. Wilcockson; Delphine Boche; V. Hugh Perry

ABSTRACT Chronic neurodegenerative diseases such as prion disease and Alzheimers disease (AD) are reported to be associated with microglial activation and increased brain and serum cytokines and acute-phase proteins (APPs). Unlike AD, prion disease is also associated with a peripheral component in that the presumed causative agent, PrPSc, also accumulates in the spleen and other lymphoreticular organs. It is unclear whether the reported systemic acute-phase response represents a systemic inflammatory response to prion disease or merely reflects central nervous system (CNS) inflammation. For this study, we investigated whether intracerebrally initiated prion disease (ME7 model) provokes splenic, hepatic, or brain inflammatory and acute-phase responses. We detected no significant elevation of proinflammatory cytokines or activation of macrophages in the spleens of these animals, despite clear PrPSc deposition. Similarly, at 19 weeks we detected no significant elevation of transcripts for the APPs serum amyloid A, complement C3, pentraxin 3, and α2-antiplasmin in the liver, despite CNS neurodegeneration and splenic PrPSc deposition at this time. However, despite the low CNS expression levels of proinflammatory cytokines, there was robust expression of these APPs in degenerating brains. These findings suggest that PrPSc is not a stimulus for splenic macrophages and that neither peripheral PrPSc deposition nor CNS neurodegeneration is sufficient to produce a systemic acute-phase response. We also propose that serum cytokine and APP measurements are not useful during preclinical disease. Possible consequences of the clear chronic elevation of APPs in the CNS are discussed.


Cell and Tissue Research | 2002

Is crustacean hyperglycaemic hormone precursor-related peptide a circulating neurohormone in crabs?

David C. Wilcockson; J. Sook Chung; Simon G. Webster

Abstract. Sites of synthesis and release patterns of crustacean hyperglycaemic hormone precursor-related peptide (CPRP) were investigated with those of crustacean hyperglycaemic hormone (cHH), in order to determine whether this precursor-related peptide satisfies certain criteria necessary for its definition as a secretable, circulating hormone. Using the edible crab, Cancer pagurus, sites of CPRP synthesis were determined by immunohistochemistry and release patterns of both peptides were determined in vivo and in vitro by radioimmunoassay of haemolymph and eyestalk superfusates. Both peptides were co-released from sinus glands (SGs) following potassium-evoked depolarization of isolated eyestalk preparations. However, stress-evoked in vivo release resulted in apparent non-stoichiometric circulating peptide profiles. This phenomenon is explained by notable differences in clearance rates of the peptides in haemolymph. In contrast to cHH, CPRP is very slowly degraded in vivo. Although CPRP is clearly a circulating peptide, whose release is concomitant with that of cHH, physiologically pertinent roles for this molecule remain to be discovered.


General and Comparative Endocrinology | 2008

Identification and developmental expression of mRNAs encoding putative insect cuticle hardening hormone, bursicon in the green shore crab Carcinus maenas.

David C. Wilcockson; Simon G. Webster

Bursicon is the ultimate hormone in insect ecdysis, which is involved in cuticle hardening. Here we show that mRNAs encoding the heterodimeric cystine knot protein bursicon (Burs alpha, beta), are present in crustaceans, suggesting ubiquity of this hormone in arthropods. We firstly report the cloning, sequencing of mRNAs encoding subunits from the water flea, Daphnia arenata and the CNS of the crab, Carcinus maenas, in comparison with insect bursicon subunits. Expression patterns of alpha and beta burs mRNAs were examined by in-situ hybridisation (ISH) and quantitative RT-PCR. In the thoracic ganglion, burs alpha and beta mRNAs were completely colocalised in neurones expressing crustacean cardioactive peptide (CCAP). However, in the brain and eyestalk, bursicon transcripts were never observed, despite a complex expression pattern of CCAP interneurones. Patterns of expression of burs alpha and beta mRNAs were constitutive during the moult cycle of adult crabs, in stark contrast to the situation in insects. Whilst copy numbers of burs beta transcripts closely matched those of CCAP, those of burs alpha mRNA were around 3-fold higher than burs beta. This pattern was apparent during embryogenesis, where bursicon transcripts were first observed at around 50% development-the same time as first expression of CCAP mRNA. Transcript ratios (burs alpha: beta) increased during development. Our studies have shown, for the first time, that bursicon mRNAs are expressed in identified neurones in the nervous system of crustaceans. These findings will now promote further investigation into the functions of bursicon during the moult cycle and development of crustaceans.


General and Comparative Endocrinology | 2013

Bursicon and neuropeptide cascades during the ecdysis program of the shore crab, Carcinus maenas

Simon G. Webster; David C. Wilcockson; Mrinalini; Jasmine Heloise Sharp

Very little is known regarding the release patterns of neuropeptides involved in ecdysis of crustaceans compared to insects. In particular, the dynamics of release of the insect cuticle hardening hormone bursicon, which has only recently been discovered in crustaceans, is unknown. Bursicon has not previously been identified as a circulating neurohormone in these animals. Since patterns of release were likely to be ephemeral, bursicon, as well as two other neurohormones involved in the ecdysis program in crustaceans, crustacean cardioactive peptide (CCAP) and crustacean hyperglycaemic hormone (CHH) were measured in single haemolymph samples in Carcinus maenas. For bursicon, an ultrasensitive time resolved-fluoroimmunoassay (TR-FIA) was developed, which firstly involved its characterisation by HPLC, bioassay and immunoassay. Simultaneous measurement of three neurohormones was performed at unparalleled levels of resolution, which has not previously been reported in any invertebrate. Additionally, expression patterns and architecture of neurones expressing both bursicon and CCAP were determined in the CNS during the moult cycle. Bursicon and CCAP are released in a massive surge, likely a single global exocytotic event on emergence, just after release of CHH. Despite co-localisation of CCAP and bursicon in neurones of the CNS, observations suggest that differential packaging of CCAP can occur in the pericardial organs in a small population of secretory boutons, thus accounting for observations showing release of some CCAP during the penultimate stages of the ecdysis program. The results obtained vividly illustrate the dynamism of neuropeptide cascades occurring during crustacean ecdysis, and also allow proposal of a hypothesis of its endocrine control.


The Journal of Comparative Neurology | 2011

A novel form of pigment-dispersing hormone in the central nervous system of the intertidal marine isopod, Eurydice pulchra (leach)

David C. Wilcockson; Lin Zhang; Michael H. Hastings; Charalambos P. Kyriacou; Simon G. Webster

Pigment‐dispersing factor (PDF) is well known as a circadian clock output factor, which drives daily activity rhythms in many insects. The role of its homologue, pigment‐dispersing hormone (PDH), in the regulation of circadian and/or circatidal rhythmicity in crustaceans is, however, poorly understood. The intertidal isopod crustacean, Eurydice pulchra has well‐defined circatidal (12.4‐hour) activity rhythms. In this study we show that this runs parallel to a circadian (24‐hour) cycle of chromatophore dispersion. As a first step in determining the potential role of PDH in these rhythms, we have identified a novel form of PDH expressed in this species. Because conventional homology cloning was unsuccessful, we employed immuno‐identification and Edman microsequencing to determine the primary structure of this peptide. From this, cDNA cloning identified the nucleotide encoding sequence and thus facilitated description of PDH neurons by in situ hybridization and immunohistochemistry. We show them to be morphologically similar to those that co‐ordinate circadian activity rhythms in insects. In animals expressing both tidal (activity) and circadian (chromatophore) rhythms, however, there was no evidence for a corresponding periodicity in the expression of pdh transcript, as determined by quantitative reverse transcriptase polymerase chain reaction (qRT‐PCR) in Eurydice heads. It is therefore suggested that any role for PDH in daily/tidal timing in Eurydice is not mediated at the transcriptional level, rather rhythms in neurohemal release may be important in such co‐ordination. J. Comp. Neurol. 519:562–575, 2011.


General and Comparative Endocrinology | 2010

Identification and expression of mRNAs encoding bursicon in the plesiomorphic central nervous system of Homarus gammarus

Jasmine Heloise Sharp; David C. Wilcockson; Simon G. Webster

Ecdysis in arthropods is a complex process, regulated by many neurohormones, which must be released in a precisely coordinated manner. In insects, the ultimate hormone involved in this process is the cuticle tanning hormone, bursicon. Recently, this hormone has been identified in crustaceans. To further define the distribution of bursicon in crustacean nervous systems, and to compare hormone structures within the sub-phylum, cDNAs encoding both bursicon subunits were cloned and sequenced from the nervous system of the European lobster, Homarus gammarus, and expression patterns including those for CCAP determined using in-situ hybridisation, quantitative RT-PCR and immunohistochemistry. Full-length cDNAs encoded bursicon subunits of 121 amino acids (Average M(r): 13365.48) for Burs α, 115 amino acids (Average M(r): 12928.54) for Burs β. Amino acid sequences were most closely related to those of crabs, and for Burs β the sequence was identical to that of the American lobster, Homarus americanus. Complete co-localisation with CCAP in the VNC was seen. Copy numbers burs α, burs β and CCAP mRNAs were between 0.5 and 1.5 × 10(5) for both bursicon subunits, 0.5-6 × 10(5) per cdn neurone for CCAP. The terminal abdominal ganglia (AG 6-8) contained about 52 cdn-type neurons, making it the largest bursicon producing region in the CNS. Double labelling IHC using recombinant Carcinus Burs α and CCAP antisera demonstrated complete co-localisation in the VNC. On the basis of the results obtained, it is proposed that CCAP and bursicon release occur simultaneously during ecdysis in crustaceans.

Collaboration


Dive into the David C. Wilcockson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Hugh Perry

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

V.H. Perry

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Zhang

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Michael H. Hastings

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Amy Williams

Mental Health Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge