Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David C. Yeo is active.

Publication


Featured researches published by David C. Yeo.


Journal of the Royal Society Interface | 2009

Stem cell bioprocessing: fundamentals and principles

Mark R Placzek; I-Ming Chung; Hugo Macedo; Siti Norhayati Ismail; Teresa Mortera Blanco; Mayasari Lim; Jae Min Cha; Iliana Fauzi; Yunyi Kang; David C. Yeo; Chi Yip Joan Ma; Julia M. Polak; Nicki Panoskaltsis; Athanasios Mantalaris

In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the ‘omics’ technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical—failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.


PLOS ONE | 2013

Improving Embryonic Stem Cell Expansion through the Combination of Perfusion and Bioprocess Model Design

David C. Yeo; Alexandros Kiparissides; Jae Min Cha; Cristóbal Aguilar-Gallardo; Julia M. Polak; Elefterios Tsiridis; Efstratios N. Pistikopoulos; Athanasios Mantalaris

Background High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoiding hazardous by-products, such as teratoma formation. Traditional, standard culture methodologies are fragmented and limited in their fed-batch feeding strategies that afford a sub-optimal environment for cellular metabolism. Herein, we investigate the impact of metabolic stress as a result of inefficient feeding utilizing a novel perfusion bioreactor and a mathematical model to achieve bioprocess improvement. Methodology/Principal Findings To characterize nutritional requirements, the expansion of undifferentiated murine ESCs (mESCs) encapsulated in hydrogels was performed in batch and perfusion cultures using bioreactors. Despite sufficient nutrient and growth factor provision, the accumulation of inhibitory metabolites resulted in the unscheduled differentiation of mESCs and a decline in their cell numbers in the batch cultures. In contrast, perfusion cultures maintained metabolite concentration below toxic levels, resulting in the robust expansion (>16-fold) of high quality ‘naïve’ mESCs within 4 days. A multi-scale mathematical model describing population segregated growth kinetics, metabolism and the expression of selected pluripotency (‘stemness’) genes was implemented to maximize information from available experimental data. A global sensitivity analysis (GSA) was employed that identified significant (6/29) model parameters and enabled model validation. Predicting the preferential propagation of undifferentiated ESCs in perfusion culture conditions demonstrates synchrony between theory and experiment. Conclusions/Significance The limitations of batch culture highlight the importance of cellular metabolism in maintaining pluripotency, which necessitates the design of suitable ESC bioprocesses. We propose a novel investigational framework that integrates a novel perfusion culture platform (controlled metabolic conditions) with mathematical modeling (information maximization) to enhance ESC bioprocess productivity and facilitate bioprocess optimization.


Small | 2016

Nanosensors for Continuous and Noninvasive Monitoring of Mesenchymal Stem Cell Osteogenic Differentiation

Christian Wiraja; David C. Yeo; Mark Seow Khoon Chong; Chenjie Xu

Assessing mesenchymal stem cell (MSC) differentiation status is crucial to verify therapeutic efficacy and optimize treatment procedures. Currently, this involves destructive methods including antibody-based protein detection and polymerase chain reaction gene analysis, or laborious and technically challenging genetic reporters. Development of noninvasive methods for real-time differentiation status assessment can greatly benefit MSC-based therapies. This report introduces a nanoparticle-based sensing platform that encapsulates two molecular beacon (MB) probes within the same biodegradable polymeric nanoparticles. One MB targets housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal reference, while another detects alkaline phosphatase (ALP), a functional biomarker. Following internalization, MBs are gradually released as the nanoparticle degrades. GAPDH MBs provide a stable reference signal throughout the monitoring period (18 days) regardless of differentiation induction. Meanwhile, ALP mRNA undergoes well-defined dynamics with peak expression observed during early stages of osteogenic differentiation. By normalizing ALP-MB signal with GAPDH-MB, changes in ALP expression can be monitored, to noninvasively validate osteogenic differentiation. As proof-of-concept, a dual-colored nanosensor is applied to validate MSC osteogenesis on 2D culture and polycaprolactone films containing osteo-inductive tricalcium phospate.


Journal of Materials Chemistry B | 2015

Tracking mesenchymal stem cell tumor-homing using fluorescent silica nanoparticles

Yu Gao; Yaqi Wang; Afu Fu; Wei Shi; David C. Yeo; Kathy Qian Luo; Hooisweng Ow; Chenjie Xu

Stem cell tracking can reveal the underlying biological processes of stem-cell-based therapies such as the migration and biodistribution of human mesenchymal stem cells (hMSCs) in cancer therapy. Nanoparticle-based contrast agents offer unprecedented opportunities for achieving this goal due to their unique and tunable imaging capabilities. However, most nanoparticles are still in the process of development due to challenges such as retention time and safety issues, and are inaccessible to most researchers. In this article, we investigate the potential application of core-shell fluorescent silica nanoparticles (i.e. C dots), which are commercially available and approved by the FDA for clinical trials. Specifically we demonstrate that 500 nm C dots have prolonged cellular retention (up to one month), minimal contrast agent transfer (at least three weeks) between cells in a co-culture Boyden chamber system, and minimal influence on the hMSC properties including viability, proliferation, differentiation, and tropism to tumor cells.


Scientific Reports | 2015

A Nanoparticle-based Sensor Platform for Cell Tracking and Status/Function Assessment

David C. Yeo; Christian Wiraja; Yon Jin Chuah; Yu Gao; Chenjie Xu

Nanoparticles are increasingly popular choices for labeling and tracking cells in biomedical applications such as cell therapy. However, all current types of nanoparticles fail to provide real-time, noninvasive monitoring of cell status and functions while often generating false positive signals. Herein, a nanosensor platform to track the real-time expression of specific biomarkers that correlate with cell status and functions is reported. Nanosensors are synthesized by encapsulating various sensor molecules within biodegradable polymeric nanoparticles. Upon intracellular entry, nanosensors reside within the cell cytoplasm, serving as a depot to continuously release sensor molecules for up to 30 days. In the absence of the target biomarkers, the released sensor molecules remain ‘Off’. When the biomarker(s) is expressed, a detectable signal is generated (On). As a proof-of-concept, three nanosensor formulations were synthesized to monitor cell viability, secretion of nitric oxide, and β-actin mRNA expression.


Journal of Materials Chemistry B | 2015

Molecular beacon-loaded polymeric nanoparticles for non-invasive imaging of mRNA expression

Christian Wiraja; David C. Yeo; Sing Yian Chew; Chenjie Xu

Assessment of intracellular mRNA expression is invaluable for understanding cellular signaling activities, identifying disease stages, and monitoring the gene expression pattern of therapeutic cells during their culture, expansion and/or differentiation process. Previous methods suffer from the need to disrupt the biological samples to perform polymerase chain reaction analysis which can be laborious, fragmented and destructive. Herein, we develop a mRNA nanosensor based on the sustained release of mRNA-specific molecular beacons (probes that fluoresce upon hybridization) from the biodegradable poly(d,l-lactide-co-glycolide) nanoparticles. Post cellular internalization, the particles gradually degrade and release the encapsulated probes which are initially weakly fluorescent. When the released probes meet and hybridize with target mRNA, they restore pre-quenched fluorescence. By virtue of quantifying the fluorescence intensity, we can estimate the cellular mRNA expression. As a case study, β-actin mRNA expression in mesenchymal stem cells cultured on a 3D matrix was monitored and compared with those cultured on a 2D plate for one week. Critically, the observed expression profile shows a great correlation with the established quantitative polymerase chain reaction analysis.


Angewandte Chemie | 2018

Near‐Infrared Fluorescent Molecular Probe for Sensitive Imaging of Keloid

Qingqing Miao; David C. Yeo; Christian Wiraja; Jianjian Zhang; Xiaoyu Ning; Chenjie Xu; Kanyi Pu

Early detection of skin diseases is imperative for their effective treatment. However, fluorescence molecular probes that allow this are rare. The first activatable near-infrared (NIR) fluorescent molecular probe is reported for sensitive imaging of keloid cells, skin cells from abnormal scar fibrous lesions. As keloid cells have high expression levels of fibroblast activation protein-alpha (FAPα), the probe (FNP1) is designed to have a caged NIR dye and a FAPα-cleavable peptide substrate linked by a self-immolative segment. FNP1 can quickly and specifically turn on its fluorescence at 710 nm by 45-fold in the presence of FAPα, allowing it to effectively recognize keloid cells from normal skin cells. Integration of FNP1 with a simple microneedle-assisted topical application enables sensitive detection of keloid cells in metabolically-active human skin tissue with a theoretical limit of detection down to 20 000 cells.


ACS Applied Materials & Interfaces | 2015

Interference-free Micro/nanoparticle Cell Engineering by Use of High-Throughput Microfluidic Separation

David C. Yeo; Christian Wiraja; Yingying Zhou; Hui Min Tay; Chenjie Xu; Han Wei Hou

Engineering cells with active-ingredient-loaded micro/nanoparticles is becoming increasingly popular for imaging and therapeutic applications. A critical yet inadequately addressed issue during its implementation concerns the significant number of particles that remain unbound following the engineering process, which inadvertently generate signals and impart transformative effects onto neighboring nontarget cells. Here we demonstrate that those unbound micro/nanoparticles remaining in solution can be efficiently separated from the particle-labeled cells by implementing a fast, continuous, and high-throughput Dean flow fractionation (DFF) microfluidic device. As proof-of-concept, we applied the DFF microfluidic device for buffer exchange to sort labeled suspension cells (THP-1) from unbound fluorescent dye and dye-loaded micro/nanoparticles. Compared to conventional centrifugation, the depletion efficiency of free dyes or particles was improved 20-fold and the mislabeling of nontarget bystander cells by free particles was minimized. The microfluidic device was adapted to further accommodate heterogeneous-sized mesenchymal stem cells (MSCs). Complete removal of unbound nanoparticles using DFF led to the usage of engineered MSCs without exerting off-target transformative effects on the functional properties of neighboring endothelial cells. Apart from its effectiveness in removing free particles, this strategy is also efficient and scalable. It could continuously process cell solutions with concentrations up to 10(7) cells·mL(-1) (cell densities commonly encountered during cell therapy) without observable loss of performance. Successful implementation of this technology is expected to pave the way for interference-free clinical application of micro/nanoparticle engineered cells.


TECHNOLOGY | 2014

Drug-eluting microneedles for self-administered treatment of keloids

Peng Xue; David C. Yeo; Yon Jin Chuah; Hong Liang Tey; Yuejun Kang; Chenjie Xu

Keloid is a long-term dermatological scarring disease characterized by disfiguring lesions resulting from overgrowth of dense fibrous tissue. Current therapeutics are ineffective, require clinical supervision and can be costly. This study investigated the use of microneedle technology in the self-management of keloid lesions. Specifically, a microneedle patch comprising of polyethylene glycol diacrylate (PEGDA) and encapsulating 5-fluorouracil (5-FU) has been developed for transdermal delivery. The microneedle patches showed requisite mechanical strength (hardness 45 ± 11 MPa, elastic modulus 0.66 ± 0.16 GPa) and were able to puncture porcine epidermis. The choice of PEGDA substrate enabled conformability to non-planar anatomical regions (e.g. elbow), with about 50% of the loaded 5-FU released during the first 12 hours. Thereafter, the microneedle efficacy was evaluated on in vitro keloid fibroblast culture models, where 5-FU loaded microneedles effectively abolished keloid fibroblast proliferation activity. In summary, we have developed a microneedle device with a good potential as an effective, economical and self-applied therapy for keloid scars.


Molecular and cellular therapies | 2014

Aptamer technology for tracking cells' status & function.

Christian Wiraja; David C. Yeo; Daniel Lio; Louai Labanieh; Mengrou Lu; Weian Zhao; Chenjie Xu

In fields such as cancer biology and regenerative medicine, obtaining information regarding cell bio-distribution, tropism, status, and other cellular functions are highly desired. Understanding cancer behaviors including metastasis is important for developing effective cancer treatments, while assessing the fate of therapeutic cells following implantation is critical to validate the efficacy and efficiency of the therapy. For visualization purposes with medical imaging modalities (e.g. magnetic resonance imaging), cells can be labeled with contrast agents (e.g. iron-oxide nanoparticles), which allows their identification from the surrounding environment. Despite the success of revealing cell biodistribution in vivo, most of the existing agents do not provide information about the status and functions of cells following transplantation. The emergence of aptamers, single-stranded RNA or DNA oligonucleotides of 15 to 60 bases in length, is a promising solution to address this need. When aptamers bind specifically to their cognate molecules, they undergo conformational changes which can be transduced into a change of imaging contrast (e.g. optical, magnetic resonance). Thus by monitoring this signal change, researchers can obtain information about the expression of the target molecules (e.g. mRNA, surface markers, cell metabolites), which offer clues regarding cell status/function in a non-invasive manner. In this review, we summarize recent efforts to utilize aptamers as biosensors for monitoring the status and function of transplanted cells. We focus on cancer cell tracking for cancer study, stem cell tracking for regenerative medicine, and immune cell (e.g. dendritic cells) tracking for immune therapy.

Collaboration


Dive into the David C. Yeo's collaboration.

Top Co-Authors

Avatar

Chenjie Xu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Christian Wiraja

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Yu Gao

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Lio

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Hong Liang Tey

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Kanyi Pu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Mark Seow Khoon Chong

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Mengjia Zheng

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Wei Shi

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge