Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Coynel is active.

Publication


Featured researches published by David Coynel.


NeuroImage | 2010

Dynamics of motor-related functional integration during motor sequence learning.

David Coynel; Guillaume Marrelec; Vincent Perlbarg; Mélanie Pélégrini-Issac; Pierre-Francois Van de Moortele; Kamil Ugurbil; Julien Doyon; Habib Benali; Stéphane Lehéricy

Motor skill learning is associated with profound changes in brain activation patterns over time. Associative and rostral premotor cortical and subcortical regions are mostly recruited during the early phase of explicit motor learning, while sensorimotor regions may increase their activity during the late learning phases. Distinct brain networks are therefore engaged during the early and late phases of motor skill learning. How these regions interact with one another and how information is transferred from one circuit to the other has been less extensively studied. In this study, we used functional MRI (fMRI) at 3T to follow the changes in functional connectivity in the associative/premotor and the sensorimotor networks, during extended practice (4 weeks) of an explicitly known sequence of finger movements. Evolution of functional connectivity was assessed using integration, a measure that quantifies the total amount of interaction within a network. When comparing the integration associated with a complex finger movement sequence to that associated with a simple sequence, we observed two patterns of decrease during the 4 weeks of practice. One was not specific as it was observed for all sequences, whereas a specific decrease was observed only for the execution of the learned sequence. This second decrease was a consequence of a relative decrease in associative/premotor network integration, together with a relative increase in between-network integration. These findings are in line with the hypothesis that information is transferred from the associative/premotor circuit to the sensorimotor circuit during the course of motor learning.


NeuroImage | 2014

Characteristics of the default mode functional connectivity in normal ageing and Alzheimer's disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements.

Paule-Joanne Toussaint; Sofiane Maiz; David Coynel; Julien Doyon; Arnaud Messé; Leonardo Cruz de Souza; Marie Sarazin; Vincent Perlbarg; Marie Odile Habert; Habib Benali

Cognitive decline in normal ageing and Alzheimers disease (AD) emerges from functional disruption in the coordination of large-scale brain systems sustaining cognition. Integrity of these systems can be examined by correlation methods based on analysis of resting state functional magnetic resonance imaging (fMRI). Here we investigate functional connectivity within the default mode network (DMN) in normal ageing and AD using resting state fMRI. Images from young and elderly controls, and patients with AD were processed using spatial independent component analysis to identify the DMN. Functional connectivity was quantified using integration and indices derived from graph theory. Four DMN sub-systems were identified: Frontal (medial and superior), parietal (precuneus-posterior cingulate, lateral parietal), temporal (medial temporal), and hippocampal (bilateral). There was a decrease in antero-posterior interactions (lower global efficiency), but increased interactions within the frontal and parietal sub-systems (higher local clustering) in elderly compared to young controls. This decreased antero-posterior integration was more pronounced in AD patients compared to elderly controls, particularly in the precuneus-posterior cingulate region. Conjoint knowledge of integration measures and graph indices in the same data helps in the interpretation of functional connectivity results, as comprehension of one measure improves with understanding of the other. The approach allows for complete characterisation of connectivity changes and could be applied to other resting state networks and different pathologies.


Nature Communications | 2017

A peripheral epigenetic signature of immune system genes is linked to neocortical thickness and memory

Virginie Freytag; Tania Carrillo-Roa; Annette Milnik; Philipp G. Sämann; Vanja Vukojevic; David Coynel; Philippe Demougin; Tobias Egli; Leo Gschwind; Frank Jessen; Eva Loos; Wolfgang Maier; Steffi G. Riedel-Heller; Martin Scherer; Christian Vogler; Michael Wagner; Elisabeth B. Binder; Dominique J.-F. de Quervain; Andreas Papassotiropoulos

Increasing age is tightly linked to decreased thickness of the human neocortex. The biological mechanisms that mediate this effect are hitherto unknown. The DNA methylome, as part of the epigenome, contributes significantly to age-related phenotypic changes. Here, we identify an epigenetic signature that is associated with cortical thickness (P=3.86 × 10−8) and memory performance in 533 healthy young adults. The epigenetic effect on cortical thickness was replicated in a sample comprising 596 participants with major depressive disorder and healthy controls. The epigenetic signature mediates partially the effect of age on cortical thickness (P<0.001). A multilocus genetic score reflecting genetic variability of this signature is associated with memory performance (P=0.0003) in 3,346 young and elderly healthy adults. The genomic location of the contributing methylation sites points to the involvement of specific immune system genes. The decomposition of blood methylome-wide patterns bears considerable potential for the study of brain-related traits.


Psychoneuroendocrinology | 2012

Testosterone levels in healthy men are related to amygdala reactivity and memory performance

Sandra Ackermann; Klara Spalek; Björn Rasch; Leo Gschwind; David Coynel; Matthias Fastenrath; Andreas Papassotiropoulos; Dominique J.-F. de Quervain

Testosterone is a steroid hormone thought to influence both emotional and cognitive functions. It is unknown, however, if testosterone also affects the interaction between these two domains, such as the emotional arousal-induced enhancement of memory. Healthy subjects (N=234) encoded pictures taken from the International Affective Picture System (IAPS) during functional magnetic resonance imaging (fMRI) and underwent a free recall test 10 min after memory encoding. We show that higher endogenous testosterone levels at encoding were associated with higher arousal ratings of neutral pictures in men. fMRI analysis revealed that higher testosterone levels were related to increased brain activation in the amygdala during encoding of neutral pictures. Moreover, endogenous testosterone levels were positively correlated with the number of freely recalled neutral pictures. No such relations were found in women. These findings point to a male-specific role for testosterone in enhancing memory by increasing the biological salience of incoming information.


The Journal of Neuroscience | 2014

Dynamic modulation of amygdala-hippocampal connectivity by emotional arousal

Matthias Fastenrath; David Coynel; Klara Spalek; X Annette Milnik; Leo Gschwind; Benno Roozendaal; Andreas Papassotiropoulos; Dominique J.-F. de Quervain

Positive and negative emotional events are better remembered than neutral events. Studies in animals suggest that this phenomenon depends on the influence of the amygdala upon the hippocampus. In humans, however, it is largely unknown how these two brain structures functionally interact and whether these interactions are similar between positive and negative information. Using dynamic causal modeling of fMRI data in 586 healthy subjects, we show that the strength of the connection from the amygdala to the hippocampus was rapidly and robustly increased during the encoding of both positive and negative pictures in relation to neutral pictures. We also observed an increase in connection strength from the hippocampus to the amygdala, albeit at a smaller scale. These findings indicate that, during encoding, emotionally arousing information leads to a robust increase in effective connectivity from the amygdala to the hippocampus, regardless of its valence.


Neuroscience & Biobehavioral Reviews | 2014

The association of the BDNF Val66Met polymorphism and the hippocampal volumes in healthy humans: A joint meta-analysis of published and new data

Fabienne Harrisberger; Klara Spalek; Renata Smieskova; André Schmidt; David Coynel; Annette Milnik; Matthias Fastenrath; Virginie Freytag; Leo Gschwind; Anna Walter; Tobias Vogel; Kerstin Bendfeldt; Dominique J.-F. de Quervain; Andreas Papassotiropoulos; Stefan Borgwardt

BACKGROUND The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (refSNP Cluster Report: rs6265) is a common and functionally relevant single nucleotide polymorphism (SNP). The gene itself, as well as the SNP rs6265, have been implicated in hippocampal learning and memory. However, imaging genetic studies have produced controversial results about the impact of this SNP on hippocampal volumes in healthy subjects. METHODS We examined the association between the rs6265 polymorphism and hippocampal volume in 643 healthy young subjects using automatic segmentation and subsequently included these data in a meta-analysis based on published studies with 5298 healthy subjects in total. RESULTS We found no significant association between SNP rs6265 and hippocampal volumes in our sample (g=0.05, p=0.58). The meta-analysis revealed a small, albeit significant difference in hippocampal volumes between genotype groups, such that Met-carriers had slightly smaller hippocampal volumes than Val/Val homozygotes (g=0.09, p=0.04), an association that was only evident when manual (g=0.22, p=0.01) but not automatic tracing approaches (g=0.04, p=0.38) were used. Studies using manual tracing showed evidence for publication bias and a significant decrease in effect size over the years with increasing sample sizes. CONCLUSIONS This study does not support the association between SNP rs6265 and hippocampal volume in healthy individuals. The weakly significant effect observed in the meta-analysis is mainly driven by studies with small sample sizes. In contrast, our original data and the meta-analysis of automatically segmented hippocampal volumes, which was based on studies with large samples sizes, revealed no significant genotype effect. Thus, meta-analyses of the association between rs6265 and hippocampal volumes should consider possible biases related to measuring technique and sample size.


Translational Psychiatry | 2014

Substantial SNP-based heritability estimates for working memory performance.

Christian Vogler; Leo Gschwind; David Coynel; Virginie Freytag; Annette Milnik; Tobias Egli; Angela Heck; D J-F de Quervain; Andreas Papassotiropoulos

Working memory (WM) is an important endophenotype in neuropsychiatric research and its use in genetic association studies is thought to be a promising approach to increase our understanding of psychiatric disease. As for any genetically complex trait, demonstration of sufficient heritability within the specific study context is a prerequisite for conducting genetic studies of that trait. Recently developed methods allow estimating trait heritability using sets of common genetic markers from genome-wide association study (GWAS) data in samples of unrelated individuals. Here we present single-nucleotide polymorphism (SNP)-based heritability estimates (h2SNP) for a WM phenotype. A Caucasian sample comprising a total of N=2298 healthy and young individuals was subjected to an N-back WM task. We calculated the genetic relationship between all individuals on the basis of genome-wide SNP data and performed restricted maximum likelihood analyses for variance component estimation to derive the h2SNP estimates. Heritability estimates for three 2-back derived WM performance measures based on all autosomal chromosomes ranged between 31 and 41%, indicating a substantial SNP-based heritability for WM traits. These results indicate that common genetic factors account for a prominent part of the phenotypic variation in WM performance. Hence, the application of GWAS on WM phenotypes is a valid method to identify the molecular underpinnings of WM.


JAMA Psychiatry | 2015

Genetic Analysis of Association Between Calcium Signaling and Hippocampal Activation, Memory Performance in the Young and Old, and Risk for Sporadic Alzheimer Disease

Angela Heck; Matthias Fastenrath; David Coynel; Bianca Auschra; Horst Bickel; Virginie Freytag; Leo Gschwind; Francina Hartmann; Frank Jessen; Hanna Kaduszkiewicz; Wolfgang Maier; Annette Milnik; Michael Pentzek; Steffi G. Riedel-Heller; Klara Spalek; Christian Vogler; Michael Wagner; Siegfried Weyerer; Steffen Wolfsgruber; Dominique J.-F. de Quervain; Andreas Papassotiropoulos

IMPORTANCE Human episodic memory performance is linked to the function of specific brain regions, including the hippocampus; declines as a result of increasing age; and is markedly disturbed in Alzheimer disease (AD), an age-associated neurodegenerative disorder that primarily affects the hippocampus. Exploring the molecular underpinnings of human episodic memory is key to the understanding of hippocampus-dependent cognitive physiology and pathophysiology. OBJECTIVE To determine whether biologically defined groups of genes are enriched in episodic memory performance across age, memory encoding-related brain activity, and AD. DESIGN, SETTING, AND PARTICIPANTS In this multicenter collaborative study, which began in August 2008 and is ongoing, gene set enrichment analysis was done by using primary and meta-analysis data from 57 968 participants. The Swiss cohorts consisted of 3043 healthy young adults assessed for episodic memory performance. In a subgroup (n = 1119) of one of these cohorts, functional magnetic resonance imaging was used to identify gene set-dependent differences in brain activity related to episodic memory. The German Study on Aging, Cognition, and Dementia in Primary Care Patients cohort consisted of 763 elderly participants without dementia who were assessed for episodic memory performance. The International Genomics of Alzheimers Project case-control sample consisted of 54 162 participants (17 008 patients with sporadic AD and 37 154 control participants). Analyses were conducted between January 2014 and June 2015. Gene set enrichment analysis in all samples was done using genome-wide single-nucleotide polymorphism data. MAIN OUTCOMES AND MEASURES Episodic memory performance in the Swiss cohort and German Study on Aging, Cognition, and Dementia in Primary Care Patients cohort was quantified by picture and verbal delayed free recall tasks. In the functional magnetic resonance imaging experiment, activation of the hippocampus during encoding of pictures served as the phenotype of interest. In the International Genomics of Alzheimers Project sample, diagnosis of sporadic AD served as the phenotype of interest. RESULTS In the discovery sample, we detected significant enrichment for genes constituting the calcium signaling pathway, especially those related to the elevation of cytosolic calcium (P = 2 × 10-4). This enrichment was replicated in 2 additional samples of healthy young individuals (P = .02 and .04, respectively) and a sample of healthy elderly participants (P = .004). Hippocampal activation (P = 4 × 10-4) and the risk for sporadic AD (P = .01) were also significantly enriched for genes related to the elevation of cytosolic calcium. CONCLUSIONS AND RELEVANCE By detecting consistent significant enrichment in independent cohorts of young and elderly participants, this study identified that calcium signaling plays a central role in hippocampus-dependent human memory processes in cognitive health and disease, contributing to the understanding and potential treatment of hippocampus-dependent cognitive pathology.


PLOS ONE | 2014

BAIAP2 is related to emotional modulation of human memory strength

Gediminas Luksys; Sandra Ackermann; David Coynel; Matthias Fastenrath; Leo Gschwind; Angela Heck; Bjoern Rasch; Klara Spalek; Christian Vogler; Andreas Papassotiropoulos; Dominique J.-F. de Quervain

Memory performance is the result of many distinct mental processes, such as memory encoding, forgetting, and modulation of memory strength by emotional arousal. These processes, which are subserved by partly distinct molecular profiles, are not always amenable to direct observation. Therefore, computational models can be used to make inferences about specific mental processes and to study their genetic underpinnings. Here we combined a computational model-based analysis of memory-related processes with high density genetic information derived from a genome-wide study in healthy young adults. After identifying the best-fitting model for a verbal memory task and estimating the best-fitting individual cognitive parameters, we found a common variant in the gene encoding the brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2) that was related to the model parameter reflecting modulation of verbal memory strength by negative valence. We also observed an association between the same genetic variant and a similar emotional modulation phenotype in a different population performing a picture memory task. Furthermore, using functional neuroimaging we found robust genotype-dependent differences in activity of the parahippocampal cortex that were specifically related to successful memory encoding of negative versus neutral information. Finally, we analyzed cortical gene expression data of 193 deceased subjects and detected significant BAIAP2 genotype-dependent differences in BAIAP2 mRNA levels. Our findings suggest that model-based dissociation of specific cognitive parameters can improve the understanding of genetic underpinnings of human learning and memory.


international symposium on biomedical imaging | 2011

Characterization of the default mode functional connectivity in normal aging and Alzheimer's disease: An approach combining entropy-based and graph theoretical measurements

Paule-Joanne Toussaint; Sofiane Maiz; David Coynel; Arnaud Messé; Vincent Perlbarg; Marie Odile Habert; Habib Benali

We have investigated functional connectivity of the default mode network (DMN) in normal aging and Alzheimers disease (AD) using resting state fMRI at 3T. Images from young and elderly controls, and patients with AD were processed using spatial independent component analysis to identify the DMN. Functional connectivity was quantified using integration and indices derived from graph theory. Four DMN sub-systems were identified: Frontal (medial frontal, superior frontal), Parietal (precuneus-posterior cingulate, lateral parietal), Temporal (medial temporal cortices), and Hippocampal (left and right). There was a decrease in antero-posterior interactions (lower global efficiency), but increased interactions within the Frontal and Parietal sub-systems (higher local clustering) in elderly compared to young controls. The decreased antero-posterior integration was more pronounced in AD patients compared to elderly controls, particularly in the precuneus-posterior cingulate region. The approach allows for a complete characterization of connectivity changes and could be applied to other resting state networks and pathologies.

Collaboration


Dive into the David Coynel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge