Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Danley is active.

Publication


Featured researches published by David Danley.


Sensors | 2009

Overview of Electrochemical DNA Biosensors: New Approaches to Detect the Expression of Life

Stefano Cagnin; Marcelo Caraballo; Carlotta Guiducci; Paolo Martini; Marty Ross; Mark SantaAna; David Danley; Todd West; Gerolamo Lanfranchi

DNA microarrays are an important tool with a variety of applications in gene expression studies, genotyping, pharmacogenomics, pathogen classification, drug discovery, sequencing and molecular diagnostics. They are having a strong impact in medical diagnostics for cancer, toxicology and infectious disease applications. A series of papers have been published describing DNA biochips as alternative to conventional microarray platforms to facilitate and ameliorate the signal readout. In this review, we will consider the different methods proposed for biochip construction, focusing on electrochemical detection of DNA. We also introduce a novel single-stranded DNA platform performing high-throughput SNP detection and gene expression profiling.


PLOS ONE | 2007

Identification of Upper Respiratory Tract Pathogens Using Electrochemical Detection on an Oligonucleotide Microarray

Michael J. Lodes; Dominic Suciu; Jodi Wilmoth; Marty Ross; Sandra B. Munro; Kim Dix; Karen Bernards; Axel G. Stöver; Miguel Quintana; Naomi Iihoshi; Wanda Lyon; David Danley; Andrew McShea

Bacterial and viral upper respiratory infections (URI) produce highly variable clinical symptoms that cannot be used to identify the etiologic agent. Proper treatment, however, depends on correct identification of the pathogen involved as antibiotics provide little or no benefit with viral infections. Here we describe a rapid and sensitive genotyping assay and microarray for URI identification using standard amplification and hybridization techniques, with electrochemical detection (ECD) on a semiconductor-based oligonucleotide microarray. The assay was developed to detect four bacterial pathogens (Bordetella pertussis, Streptococcus pyogenes, Chlamydia pneumoniae and Mycoplasma pneumoniae) and 9 viral pathogens (adenovirus 4, coronavirus OC43, 229E and HK, influenza A and B, parainfluinza types 1, 2, and 3 and respiratory syncytial virus. This new platform forms the basis for a fully automated diagnostics system that is very flexible and can be customized to suit different or additional pathogens. Multiple probes on a flexible platform allow one to test probes empirically and then select highly reactive probes for further iterative evaluation. Because ECD uses an enzymatic reaction to create electrical signals that can be read directly from the array, there is no need for image analysis or for expensive and delicate optical scanning equipment. We show assay sensitivity and specificity that are excellent for a multiplexed format.


Journal of Clinical Microbiology | 2006

Use of Semiconductor-Based Oligonucleotide Microarrays for Influenza A Virus Subtype Identification and Sequencing

Michael J. Lodes; Dominic Suciu; Mark Elliott; Axel G. Stöver; Marty Ross; Marcelo Caraballo; Kim Dix; James Crye; Richard J. Webby; Wanda J. Lyon; David Danley; Andrew McShea

ABSTRACT In the face of concerns over an influenza pandemic, identification of virulent influenza A virus isolates must be obtained quickly for effective responses. Rapid subtype identification, however, is difficult even in well-equipped virology laboratories or is unobtainable in the field under more austere conditions. Here we describe a genome assay and microarray design that can be used to rapidly identify influenza A virus hemagglutinin subtypes 1 through 15 and neuraminidase subtypes 1 through 9. Also described is an array-based enzymatic assay that can be used to sequence portions of both genes or any other sequence of interest.


Sensors | 2010

Use of a multiplexed CMOS microarray to optimize and compare oligonucleotide binding to DNA probes synthesized or immobilized on individual electrodes.

Karl Maurer; Nina Yazvenko; Jodi Wilmoth; John Cooper; Wanda Lyon; David Danley

The CombiMatrix microarray with 12,544 electrodes supports in situ electrochemical synthesis of user-defined DNA probes. As an alternative, we immobilized commercially synthesized DNA probes on individual electrodes coated with electropolymerized polypyrrole (Ppy). Hybridization was measured using a biotinylated target oligonucleotide and either Cy5-streptavidin and fluorescence detection or horseradish peroxidase-streptavidin and enzyme-enhanced electrochemical detection. Detection efficiencies were optimized by varying the deposition of the Ppy, the terminal groups on the DNA probes, and other factors that impacted fluorescence quenching and electrical conductivity. Optimized results were compared against those obtained using a microarray with the same DNA sequences synthesized in situ. Immobilized probes produced higher fluorescence signals, possibly by providing a greater stand off between the Cy5 on the target oligonucleotide and the quenching effects of the Ppy and the platinum electrode.


Sensors | 2010

Multiplexed Electrochemical Detection of Yersinia Pestis and Staphylococcal Enterotoxin B using an Antibody Microarray

Jason Wojciechowski; David Danley; John Cooper; Nina Yazvenko; Chris R. Taitt

The CombiMatrix antibody microarray is a versatile, sensitive detection platform based on the generation and transduction of electrochemical signals following antigen binding to surface antibodies. The sensor chip described herein is comprised of microelectrodes coupled to an adjacent bio-friendly matrix coated with antibodies to the biological pathogens Yersinia pestis and Bacillus anthracis, and the bacterial toxin staphylococcal enterotoxin B (SEB). Using this system, we were able to detect SEB and inactivated Y. pestis individually as well as in two-plex assays at concentrations as low as 5 pg/mL and 106 CFU/mL, respectively. We also introduce super avidin-biotin system (SABS) as a viable and effective means to enhance assay signal responses and lower detection limits. Together these technologies represent substantial advances in point-of-care and point-of-use detection applications.


Journal of Laboratory Automation | 2006

Integrated Microfluidic CustomArray Device for Bacterial Genotyping and Identification

Robin Hui Liu; Sandra B. Munro; Tai Nguyen; Tony Siuda; Dominic Suciu; Michael Bizak; Mike Slota; H. Sho Fuji; David Danley; Andy McShea

The ongoing threat of the potential use of biothreat agents (such as Bacillus anthracis) as a biochemical weapon emphasizes the need for a rapid, miniature, fully automated, and highly specific detection assay. An integrated and self-contained microfluidic device has been developed to rapidly detect B. anthracis and many other bacteria. The device consists of a semiconductor-based DNA microarray chip with 12,000 features and a microfluidic cartridge that automates the fluid handling steps required to carry out a genotyping assay for pathogen identification. This fully integrated and disposable device consists of low-cost microfluidic pumps, mixers, valves, fluid channels, reagent storage chambers, and DNA microarray silicon chip. Microarray hybridization and subsequent fluid handling and reactions were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. The genotyping results showed that the device was able to identify and distinguish B. anthracis from the other members of the closely related Bacillus cereus group, demonstrating the potential of integrated microfluidic and microarray technology for highly specific pathogen detection. The device provides a cost-effective solution to eliminate labor-intensive and time-consuming fluid handling steps and allows the detection and identification of biological warfare agents in a rapid and automated fashion.


PLOS ONE | 2010

Targeted Deposition of Antibodies on a Multiplex CMOS Microarray and Optimization of a Sensitive Immunoassay Using Electrochemical Detection

John Cooper; Nina Yazvenko; Kia Peyvan; Karl Maurer; Chris R. Taitt; Wanda J. Lyon; David Danley

Background The CombiMatrix ElectraSense® microarray is a highly multiplex, complementary metal oxide semiconductor with 12,544 electrodes that are individually addressable. This platform is commercially available as a custom DNA microarray; and, in this configuration, it has also been used to tether antibodies (Abs) specifically on electrodes using complementary DNA sequences conjugated to the Abs. Methodology/Principal Findings An empirical method is described for developing and optimizing immunoassays on the CombiMatrix ElectraSense® microarray based upon targeted deposition of polypyrrole (Ppy) and capture Ab. This process was automated using instrumentation that can selectively apply a potential or current to individual electrodes and also measure current generated at the electrodes by an enzyme-enhanced electrochemical (ECD) reaction. By designating groups of electrodes on the array for different Ppy deposition conditions, we determined that the sensitivity and specificity of a sandwich immunoassay for staphylococcal enterotoxin B (SEB) is influenced by the application of different voltages or currents and the application time. The sandwich immunoassay used a capture Ab adsorbed to the Ppy and a reporter Ab labeled for fluorescence detection or ECD, and results from these methods of detection were different. Conclusions/Significance Using Ppy deposition conditions for optimum results, the lower limit of detection for SEB using the ECD assay was between 0.003 and 0.01 pg/ml, which represents an order of magnitude improvement over a conventional enzyme-linked immunosorbant assay. In the absence of understanding the variables and complexities that affect assay performance, this highly multiplexed electrode array provided a rapid, high throughput, and empirical approach for developing a sensitive immunoassay.


Biosensors and Bioelectronics | 2012

Microelectrode array biosensor for studying carbohydrate-mediated interactions

Jeffrey W. Chamberlain; Karl Maurer; John Cooper; Wanda Lyon; David Danley; Daniel M. Ratner

Carbohydrate-mediated host-pathogen interactions are essential to bacterial and viral pathogenesis, and represent an attractive target for the development of antiadhesives to prevent infection. We present a versatile microelectrode array-based platform to investigate carbohydrate-mediated protein and bacterial binding, with the objective of developing a generalizable method for screening inhibitors of host-microbe interactions. Microelectrode arrays are well suited for interrogating biological binding events, including proteins and whole-cells, and are amenable to electrochemical derivitization, facilitating rapid deposition of biomolecules. In this study, we achieve microelectrode functionalization with carbohydrates via controlled polymerization of pyrrole to individual microelectrodes, followed by physisorption of neoglycoconjugates to the polypyrrole-coated electrodes. Bioactivity of the immobilized carbohydrates was confirmed with carbohydrate-binding proteins (lectins) detected by both fluorescent and electrochemical means. The platforms ability to analyze whole-cell binding was demonstrated using strains of Escherichia coli and Salmonella enterica, and the dose-dependent inhibition of S. enterica by a soluble carbohydrate antiadhesive.


Archive | 2009

Integrated Microfluidic Devices for Automated Microarray-Based Gene Expression and Genotyping Analysis

Robin Hui Liu; Mike Lodes; H. Sho Fuji; David Danley; Andrew McShea

Microarray assays typically involve multistage sample processing and fluidic handling, which are generally labor-intensive and time-consuming. Automation of these processes would improve robustness, reduce run-to-run and operator-to-operator variation, and reduce costs. In this chapter, a fully integrated and self-contained microfluidic biochip device that has been developed to automate the fluidic handling steps for microarray-based gene expression or genotyping analysis is presented. The device consists of a semiconductor-based CustomArray® chip with 12,000 features and a microfluidic cartridge. The CustomArray was manufactured using a semiconductor-based in situ synthesis technology. The micro-fluidic cartridge consists of microfluidic pumps, mixers, valves, fluid channels, and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross-talk of the stored reagents. Gene expression study of the human leukemia cell line (K562) and genotyping detection and sequencing of influenza A subtypes have been demonstrated using this integrated biochip platform. For gene expression assays, the microfluidic CustomArray device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than three orders of magnitude. Experiment also showed that chip-to-chip variability was low indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis. The genotyping results showed that the device identified influenza A hemagglutinin and neuraminidase subtypes and sequenced portions of both genes, demonstrating the potential of integrated microfluidic and microarray technology for multiple virus detection. The device provides a cost-effective solution to eliminate labor-intensive and time-consuming fluidic handling steps and allows microarray-based DNA analysis in a rapid and automated fashion.


Archive | 2007

Integrated Microfluidic CustomArray™ Biochips for Gene Expression and Genotyping Analysis

Robin Hui Liu; Mike Lodes; H. Sho Fuji; David Danley; Andrew McShea

DNA microarray technology has become one of the most promising analytical tools in molecular biology. It has been widely used for studying mRNA levels and examining gene expression in biological samples. It is becoming a powerful tool in the arena of diagnostics and personalized medicine. In this chapter, we present a fully integrated and self-contained microfluidic biochip device that has been developed to automate the fluidic handling steps required to carry out microarray-based gene expression or genotyping analysis. The device consists of a semiconductor-based CustomArray™ chip with 12,000 features and a microfluidic cartridge. The CustomArray™ was manufactured using a semiconductor-based in situ synthesis technology. The oligonucleotides were synthesized on an array of electrodes on a semiconductor chip using phosphoramidite chemistry under electrochemical control. The microfluidic cartridge consists of microfluidic pumps, mixers, valves, fluid channels and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross talk of the stored reagents. Gene expression study of the human leukemia cell line (K562) and genotyping detection and sequencing of influenza A subtypes have been demonstrated using this integrated biochip platform. For gene expression assays, the microfluidic CustomArray™ device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than three orders of magnitude. Experiment also showed that chip-to-chip variability was low indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis. The genotyping results showed that the device identified influenza A hemagglutinin and neuraminidase subtypes and sequenced portions of both genes, demonstrating the potential of integrated microfluidic and microarray technology for multiple virus detection. The device provides a cost-effective solution to eliminate labor-intensive and time-consuming fluidic handling steps and allows microarray-based DNA analysis in a rapid and automated fashion.

Collaboration


Dive into the David Danley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wanda Lyon

Wright-Patterson Air Force Base

View shared research outputs
Researchain Logo
Decentralizing Knowledge