Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David DeCaprio is active.

Publication


Featured researches published by David DeCaprio.


Science | 2007

Genome sequence of Aedes aegypti, a major arbovirus vector

Vishvanath Nene; Jennifer R. Wortman; Daniel John Lawson; Brian J. Haas; Chinnappa D. Kodira; Zhijian Jake Tu; Brendan J. Loftus; Zhiyong Xi; Karyn Megy; Manfred Grabherr; Quinghu Ren; Evgeny M. Zdobnov; Neil F. Lobo; Kathryn S. Campbell; Susan E. Brown; Maria F. Bonaldo; Jingsong Zhu; Steven P. Sinkins; David G. Hogenkamp; Paolo Amedeo; Peter Arensburger; Peter W. Atkinson; Shelby Bidwell; Jim Biedler; Ewan Birney; Robert V. Bruggner; Javier Costas; Monique R. Coy; Jonathan Crabtree; Matt Crawford

We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ∼1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of ∼4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of ∼2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.


Nature | 2006

Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis

Jörg Kämper; Regine Kahmann; Michael Bölker; Li-Jun Ma; Thomas Brefort; Barry J. Saville; Flora Banuett; James W. Kronstad; Scott E. Gold; Olaf Müller; Michael H. Perlin; Han A. B. Wösten; Ronald P. de Vries; José Ruiz-Herrera; Cristina G. Reynaga-Peña; Karen M. Snetselaar; Michael McCann; José Pérez-Martín; Michael Feldbrügge; Christoph W. Basse; Gero Steinberg; Jose I. Ibeas; William Holloman; Plinio Guzman; Mark L. Farman; Jason E. Stajich; Rafael Sentandreu; Juan M. González-Prieto; John C. Kennell; Lázaro Molina

Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant–microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no ‘true’ virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.


Science | 2007

The Fusarium graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization

Christina A. Cuomo; Ulrich Güldener; Jin-Rong Xu; Frances Trail; B. Gillian Turgeon; Antonio Di Pietro; Jonathan D. Walton; Li-Jun Ma; Scott E. Baker; Martijn Rep; Gerhard Adam; John Antoniw; Thomas K. Baldwin; Sarah E. Calvo; Yueh Long Chang; David DeCaprio; Liane R. Gale; Sante Gnerre; Rubella S. Goswami; Kim E. Hammond-Kosack; Linda J. Harris; Karen Hilburn; John C. Kennell; Scott Kroken; Jon K. Magnuson; Gertrud Mannhaupt; Evan Mauceli; Hans W. Mewes; Rudolf Mitterbauer; Gary J. Muehlbauer

We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher rates of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.


Nature Genetics | 2007

A genome-wide map of diversity in Plasmodium falciparum

Sarah K. Volkman; Pardis C. Sabeti; David DeCaprio; Daniel E. Neafsey; Stephen F. Schaffner; Danny A. Milner; Johanna P. Daily; Ousmane Sarr; Daouda Ndiaye; Omar Ndir; Soulyemane Mboup; Manoj T. Duraisingh; Amanda K Lukens; Alan Derr; Nicole Stange-Thomann; Skye Waggoner; Robert C. Onofrio; Liuda Ziaugra; Evan Mauceli; Sante Gnerre; David B. Jaffe; Joanne Zainoun; Roger Wiegand; Bruce W. Birren; Daniel L. Hartl; James E. Galagan; Eric S. Lander; Dyann F. Wirth

Genetic variation allows the malaria parasite Plasmodium falciparum to overcome chemotherapeutic agents, vaccines and vector control strategies and remain a leading cause of global morbidity and mortality. Here we describe an initial survey of genetic variation across the P. falciparum genome. We performed extensive sequencing of 16 geographically diverse parasites and identified 46,937 SNPs, demonstrating rich diversity among P. falciparum parasites (π = 1.16 × 10−3) and strong correlation with gene function. We identified multiple regions with signatures of selective sweeps in drug-resistant parasites, including a previously unidentified 160-kb region with extremely low polymorphism in pyrimethamine-resistant parasites. We further characterized 54 worldwide isolates by genotyping SNPs across 20 genomic regions. These data begin to define population structure among African, Asian and American groups and illustrate the degree of linkage disequilibrium, which extends over relatively short distances in African parasites but over longer distances in Asian parasites. We provide an initial map of genetic diversity in P. falciparum and demonstrate its potential utility in identifying genes subject to recent natural selection and in understanding the population genetics of this parasite.


Nucleic Acids Research | 2009

TB database: an integrated platform for tuberculosis research

T. B. K. Reddy; Robert W. Riley; Farrell Wymore; Phillip Montgomery; David DeCaprio; Reinhard Engels; Marcel Gellesch; Jeremy Hubble; Dennis Jen; Heng Jin; Michael Koehrsen; Lisa Larson; Maria Mao; Michael Nitzberg; Peter Sisk; Christian Stolte; Brian Weiner; Jared White; Zachariah K. Zachariah; Gavin Sherlock; James E. Galagan; Catherine A. Ball; Gary K. Schoolnik

The effective control of tuberculosis (TB) has been thwarted by the need for prolonged, complex and potentially toxic drug regimens, by reliance on an inefficient vaccine and by the absence of biomarkers of clinical status. The promise of the genomics era for TB control is substantial, but has been hindered by the lack of a central repository that collects and integrates genomic and experimental data about this organism in a way that can be readily accessed and analyzed. The Tuberculosis Database (TBDB) is an integrated database providing access to TB genomic data and resources, relevant to the discovery and development of TB drugs, vaccines and biomarkers. The current release of TBDB houses genome sequence data and annotations for 28 different Mycobacterium tuberculosis strains and related bacteria. TBDB stores pre- and post-publication gene-expression data from M. tuberculosis and its close relatives. TBDB currently hosts data for nearly 1500 public tuberculosis microarrays and 260 arrays for Streptomyces. In addition, TBDB provides access to a suite of comparative genomics and microarray analysis software. By bringing together M. tuberculosis genome annotation and gene-expression data with a suite of analysis tools, TBDB (http://www.tbdb.org/) provides a unique discovery platform for TB research.


Nature | 2006

DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage

Michael C. Zody; Manuel Garber; David J. Adams; Ted Sharpe; Jennifer Harrow; James R. Lupski; Christine Nicholson; Steven M. Searle; Laurens Wilming; Sarah K. Young; Amr Abouelleil; Nicole R. Allen; Weimin Bi; Toby Bloom; Mark L. Borowsky; Boris Bugalter; Jonathan Butler; Jean L. Chang; Chao-Kung Chen; April Cook; Benjamin Corum; Christina A. Cuomo; Pieter J. de Jong; David DeCaprio; Ken Dewar; Michael Fitzgerald; James Gilbert; Richard Gibson; Sante Gnerre; Steven Goldstein

Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.


Current Opinion in Chemical Biology | 2010

Cheminformatics approaches to analyze diversity in compound screening libraries.

Lakshmi B. Akella; David DeCaprio

As high-throughput screening matures as a discipline, cheminformatics is playing an increasingly important role in selecting new compounds for diverse screening libraries. New visualization techniques such as multi-fusion similarity maps, scaffold trees, and principal moments of inertia plots provide complementary information on compound libraries and enable identification of unexplored regions of chemical space with potential biological relevance. Quantitative metrics have been developed to analyze libraries for properties such as natural product-likeness and shape complexity. Analysis of high-throughput screening results and drug discovery programs identify compounds problematic for screening. Taken together these approaches allow us to increase the diversity of biological outcomes available in compound screening libraries and improve the success rates of high-throughput screening against new targets without making significant increases in the size of compound libraries.


Nature | 2006

Analysis of the DNA sequence and duplication history of human chromosome 15

Michael C. Zody; Manuel Garber; Ted Sharpe; Sarah K. Young; Lee Rowen; Keith O'Neill; Charles A. Whittaker; Michael Kamal; Jean L. Chang; Christina A. Cuomo; Ken Dewar; Michael Fitzgerald; Chinnappa D. Kodira; Anup Madan; Shizhen Qin; Xiaoping Yang; Nissa Abbasi; Amr Abouelleil; Harindra Arachchi; Lida Baradarani; Brian Birditt; Scott Bloom; Toby Bloom; Mark L. Borowsky; Jeremy Burke; Jonathan Butler; April Cook; Kurt DeArellano; David DeCaprio; Lester Dorris

Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplications in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome.


Genetics | 2008

A High-Density Single Nucleotide Polymorphism Map for Neurospora crassa

Randy Lambreghts; Mi Shi; William J. Belden; David DeCaprio; Daniel J. Park; Matthew R. Henn; James E. Galagan; Meray Baştürkmen; Bruce Birren; Matthew S. Sachs; Jay C. Dunlap; Jennifer J. Loros

We report the discovery and validation of a set of single nucleotide polymorphisms (SNPs) between the reference Neurospora crassa strain Oak Ridge and the Mauriceville strain (FGSC 2555), of sufficient density to allow fine mapping of most loci. Sequencing of Mauriceville cDNAs and alignment to the completed genomic sequence of the Oak Ridge strain identified 19,087 putative SNPs. Of these, a subset was validated by cleaved amplified polymorphic sequence (CAPS), a simple and robust PCR-based assay that reliably distinguishes between SNP alleles. Experimental confirmation resulted in the development of 250 CAPS markers distributed evenly over the genome. To demonstrate the applicability of this map, we used bulked segregant analysis followed by interval mapping to locate the csp-1 mutation to a narrow region on LGI. Subsequently, we refined mapping resolution to 74 kbp by developing additional markers, resequenced the candidate gene, NCU02713.3, in the mutant background, and phenocopied the mutation by gene replacement in the WT strain. Together, these techniques demonstrate a generally applicable and straightforward approach for the isolation of novel genes from existing mutants. Data on both putative and validated SNPs are deposited in a customized public database at the Broad Institute, which encourages augmentation by community users.


Bioinformatics | 2006

Combo: a whole genome comparative browser

Reinhard Engels; Tamara Yu; Christopher B. Burge; Jill P. Mesirov; David DeCaprio; James E. Galagan

SUMMARY Combo is a comparative genome browser that provides a dynamic view of whole genome alignments along with their associated annotations. Combo provides two different visualization perspectives. The perpendicular (dot plot) view provides a dot plot of genome alignments synchronized with a display of genome annotations along each axis. The parallel view displays two genome annotations horizontally, synchronized through a panel displaying local alignments as trapezoids. Users can zoom to any resolution, from whole chromosomes to individual bases. They can select, highlight and view detailed information from specific alignments and annotations. Combo is an organism agnostic and can import data from a variety of file formats. AVAILABILITY Combo is integrated as part of the Argo Genome Browser which also provides single-genome browsing and editing capabilities. Argo is written in Java, runs on multiple platforms and is freely available for download at http://www.broad.mit.edu/annotation/argo/.

Collaboration


Dive into the David DeCaprio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Garber

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge