David Derse
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Derse.
Genomics | 1992
Marga Belle White; Magda Carvalho; David Derse; Stephen J. O'Brien; Michael Dean
We have developed a sensitive technique for detecting single base substitutions in polymerase chain reaction (PCR) products from individuals heterozygous for polymorphisms or new mutations. This technique takes advantage of the formation of heteroduplexes in the PCR between different alleles from heterozygous individuals. These heteroduplexes can be detected on polyacrylamide gels because they migrate slower than their corresponding homoduplexes. Using PCR, we have generated a series of point mutations in a defined region of DNA in the equine infectious anemia virus (EIAV). Each mutation is the result of a single base substitution. By mixing the PCR products amplified from these mutations with one another, as well as with wildtype PCR products, we can generate heteroduplexes in which the identity of the mismatched bases is known. We detected eight of nine point mutations using this technique. We have also modified the electrophoretic conditions to optimize the detection of these heteroduplexes. In addition, the usefulness of this technique is demonstrated by its ability to detect a mutation in the cystic fibrosis gene that is the result of a single base substitution. This technique should prove useful for rapidly screening large numbers of individuals for new mutations or polymorphisms.
Nature Medicine | 2004
Christophe Nicot; Miroslav Dundr; Julie Johnson; Jake Fullen; Norma Alonzo; Risaku Fukumoto; Gerald L. Princler; David Derse; Tom Misteli; Genoveffa Franchini
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) persists despite a vigorous virus-specific host immune response, and causes adult T-cell leukemia and lymphoma in approximately 2% of infected individuals. Here we report that HTLV-1 has evolved a genetic function to restrict its own replication by a novel post-transcriptional mechanism. The HTLV-1-encoded p30II is a nuclear-resident protein that binds to, and retains in the nucleus, the doubly spliced mRNA encoding the Tax and Rex proteins. Because Tex and Rex are positive regulators of viral gene expression, their inhibition by p30II reduces virion production. p30II inhibits virus expression by reducing Tax and Rex protein expression.
Journal of Virology | 2009
Rebecca S. LaRue; Valgerdur Andrésdóttir; Yannick Blanchard; Silvestro G. Conticello; David Derse; Michael Emerman; Warner C. Greene; Stefán R. Jónsson; Nathaniel R. Landau; Martin Löchelt; Harmit S. Malik; Michael H. Malim; Carsten Münk; Stephen J. O'Brien; Vinay K. Pathak; Klaus Strebel; Simon Wain-Hobson; Xiao Fang Yu; Naoya Yuhki; Reuben S. Harris
Guidelines for Naming Nonprimate APOBEC3 Genes and Proteins Rebecca S. LaRue, Valgerdur Andresdottir, Yannick Blanchard, Silvestro G. Conticello, David Derse, Michael Emerman, Warner C. Greene, Stefan R. Jonsson, Nathaniel R. Landau, Martin Lochelt, Harmit S. Malik, Michael H. Malim, Carsten Munk, Stephen J. O’Brien, Vinay K. Pathak, Klaus Strebel, Simon Wain-Hobson, Xiao-Fang Yu, Naoya Yuhki, and Reuben S. Harris*
Journal of Virology | 2007
David Derse; Bruce J. Crise; Yuan Li; Gerald L. Princler; Nicole Lum; Claudia Stewart; Connor F. McGrath; Stephen H. Hughes; David J. Munroe; Xiaolin Wu
ABSTRACT Retroviral integration into the host genome is not entirely random, and integration site preferences vary among different retroviruses. Human immunodeficiency virus (HIV) prefers to integrate within active genes, whereas murine leukemia virus (MLV) prefers to integrate near transcription start sites and CpG islands. On the other hand, integration of avian sarcoma-leukosis virus (ASLV) shows little preference either for genes, transcription start sites, or CpG islands. While host cellular factors play important roles in target site selection, the viral integrase is probably the major viral determinant. It is reasonable to hypothesize that retroviruses with similar integrases have similar preferences for target site selection. Although integration profiles are well defined for members of the lentivirus, spumaretrovirus, alpharetrovirus, and gammaretrovirus genera, no members of the deltaretroviruses, for example, human T-cell leukemia virus type 1 (HTLV-1), have been evaluated. We have mapped 541 HTLV-1 integration sites in human HeLa cells and show that HTLV-1, like ASLV, does not specifically target transcription units and transcription start sites. Comparing the integration sites of HTLV-1 with those of ASLV, HIV, simian immunodeficiency virus, MLV, and foamy virus, we show that global and local integration site preferences correlate with the sequence/structure of virus-encoded integrases, supporting the idea that integrase is the major determinant of retroviral integration site selection. Our results suggest that the global integration profiles of other retroviruses could be predicted from phylogenetic comparisons of the integrase proteins. Our results show that retroviruses that engender different insertional mutagenesis risks can have similar integration profiles.
Journal of Virology | 2001
David Derse; Shawn A. Hill; Patricia Lloyd; Hye-kyung Chung; Barry A. Morse
ABSTRACT A sensitive and quantitative cell-free infection assay, utilizing recombinant human T-cell leukemia virus type 1 (HTLV-1)-based vectors, was developed in order to analyze early events in the virus replication cycle. Previous difficulties with the low infectivity and restricted expression of the virus have prevented a clear understanding of these events. Virus stocks were generated by transfecting cells with three plasmids: (i) a packaging plasmid encoding HTLV-1 structural and regulatory proteins, (ii) an HTLV-1 transfer vector containing either firefly luciferase or enhanced yellow fluorescent protein genes, and (iii) an envelope expression plasmid. Single-round infections were initiated by exposing target cells to filtered supernatants and quantified by assaying for luciferase activity in cell extracts or by enumerating transduced cells by flow cytometry. Transduction was dependent on reverse transcription and integration of the recombinant virus genome, as shown by the effects of the reverse transcriptase inhibitor 3′-azido-3′-deoxythymidine (AZT) and by mutation of the integrase gene in the packaging vector, respectively. The 50% inhibitory concentration of AZT was determined to be 30 nM in this HTLV-1 replication system. The stability of HTLV-1 particles, pseudotyped with either vesicular stomatitis virus G protein or HTLV-1 envelope, was typical of retroviruses, exhibiting a half-life of approximately 3.5 h at 37°C. The specific infectivity of recombinant HTLV-1 virions was at least 3 orders of magnitude lower than that of analogous HIV-1 particles, though both were pseudotyped with the same envelope. Thus, the low infectivity of HTLV-1 is determined in large part by properties of the core particle and by the efficiency of postentry processes.
Proceedings of the National Academy of Sciences of the United States of America | 2007
David Derse; Shawn A. Hill; Gerald L. Princler; Patricia Lloyd; Gisela Heidecker
Human T cell leukemia virus type 1 (HTLV-1) has evolved a remarkable strategy to thwart the antiviral effects of the cellular cytidine deaminase APOBEC3G (hA3G). HTLV-1 infects T lymphocytes in vivo, where, like HIV-1, it is likely to encounter hA3G. HIV-1 counteracts the innate antiviral activity of hA3G by producing an accessory protein, Vif, which hastens the degradation of hA3G. In contrast, HTLV-1 does not encode a Vif homologue; instead, HTLV-1 has evolved a cis-acting mechanism to prevent hA3G restriction. We demonstrate here that a peptide motif in the C terminus of the HTLV-1 nucleocapsid (NC) domain inhibits hA3G packaging into nascent virions. Mutation of amino acids within this region resulted in increased levels of hA3G incorporation into virions and increased susceptibility to hA3G restriction. Elements within the C-terminal extension of the NC domain are highly conserved among the primate T cell leukemia viruses, but this extension is absent in all other retroviral NC proteins.
PLOS ONE | 2013
Peng Zhong; Luis M. Agosto; Anna Ilinskaya; Batsukh Dorjbal; Rosaline Truong; David Derse; Pradeep D. Uchil; Gisela Heidecker; Walther Mothes
Virus transmission can occur either by a cell-free mode through the extracellular space or by cell-to-cell transmission involving direct cell-to-cell contact. The factors that determine whether a virus spreads by either pathway are poorly understood. Here, we assessed the relative contribution of cell-free and cell-to-cell transmission to the spreading of the human immunodeficiency virus (HIV). We demonstrate that HIV can spread by a cell-free pathway if all the steps of the viral replication cycle are efficiently supported in highly permissive cells. However, when the cell-free path was systematically hindered at various steps, HIV transmission became contact-dependent. Cell-to-cell transmission overcame barriers introduced in the donor cell at the level of gene expression and surface retention by the restriction factor tetherin. Moreover, neutralizing antibodies that efficiently inhibit cell-free HIV were less effective against cell-to-cell transmitted virus. HIV cell-to-cell transmission also efficiently infected target T cells that were relatively poorly susceptible to cell-free HIV. Importantly, we demonstrate that the donor and target cell types influence critically the extent by which cell-to-cell transmission can overcome each barrier. Mechanistically, cell-to-cell transmission promoted HIV spread to more cells and infected target cells with a higher proviral content than observed for cell-free virus. Our data demonstrate that the frequently observed contact-dependent spread of HIV is the result of specific features in donor and target cell types, thus offering an explanation for conflicting reports on the extent of cell-to-cell transmission of HIV.
PLOS Biology | 2009
Jing Jin; Nathan M. Sherer; Gisela Heidecker; David Derse; Walther Mothes
Applying 4D imaging, this study investigates the mechanism by which cell-cell contact enhances retrovirus spreading and demonstrates that viral budding is highly polarized towards sites of cell-cell contact.
Journal of Virology | 2004
Gisela Heidecker; Patricia Lloyd; Kristi Fox; Kunio Nagashima; David Derse
ABSTRACT Three late assembly domain consensus motifs, namely PTAP, PPPY, and LYPXL, have been identified in different retroviruses. They have been shown to interact with the cellular proteins TSG101, Nedd4, and AP2 or AIP, respectively. Human T-cell leukemia virus type 1 (HTLV-1) has a PPPY and a PTAP motif, separated by two amino acids, located at the end of MA, but only the PPPY motif is conserved in the deltaretrovirus group. Like other retroviral peptides carrying the late motif, MA is mono- or di-ubiquitinated. A mutational analysis showed that 90% of PPPY mutant particles were retained in the cell compared to 15% for the wild-type virus. Mutations of the PTAP motif resulted in a 20% decrease in particle release. In single-cycle infectivity assays, the infectious titers of late motif mutants correlated with the amounts of released virus, as determined by an enzyme-linked immunosorbent assay. We observed binding of MA to the WW domains of the Nedd4 family member WWP1 but not to the amino-terminal ubiquitin E2 variant domain of TSG101 in mammalian two-hybrid analyses. The binding to WWP1 was eliminated when the PPPY motif was mutated. However, MA showed binding to TSG101 in the yeast two-hybrid system that was dependent on an intact PTAP motif. A dominant-negative (DN) mutant of WWP1 could inhibit budding of the intact HTLV-1 virus. In contrast, DN TSG101 only affected the release of virus-like particles encoded by Gag expression plasmids. Electron and fluorescent microscopy showed that Gag accumulates in large patches in the membranes of cells expressing viruses with PPPY mutations. Very few tethered immature particles could be detected in these samples, suggesting that budding is impaired at an earlier step than in other retroviruses.
Journal of Virology | 2008
Samuel J. Rulli; Jane Mirro; Shawn A. Hill; Patricia Lloyd; Robert J. Gorelick; John M. Coffin; David Derse; Alan Rein
ABSTRACT APOBEC3 proteins are cytidine deaminases which help defend cells against retroviral infections. One antiviral mechanism involves deaminating dC residues in minus-strand DNA during reverse transcription, resulting in G-to-A mutations in the coding strand. We investigated the effects of mouse APOBEC3 (mA3) and human APOBEC3G (hA3G) upon Moloney murine leukemia virus (MLV). We find that mA3 inactivates MLV but is significantly less effective against MLV than is hA3G. In contrast, mA3 is as potent against human immunodeficiency virus type 1 (HIV-1, lacking the protective Vif protein) as is hA3G. The two APOBEC3 proteins are packaged to similar extents in MLV particles. Dose-response profiles imply that a single APOBEC3 molecule (or oligomer) is sufficient to inactivate an MLV particle. The inactivation of MLV by mA3 and hA3G is accompanied by relatively small reductions in the amount of viral DNA in infected cells. Although hA3G induces significant levels of G-to-A mutations in both MLV and HIV DNAs, and mA3 induces these mutations in HIV DNA, no such mutations were detected in DNA synthesized by MLV inactivated by mA3. Thus, MLV has apparently evolved to partially resist the antiviral effects of mA3 and to totally resist the ability of mA3 to induce G-to-A mutation in viral DNA. Unlike the resistance of HIV-1 and human T-cell leukemia virus type 1 to hA3G, the resistance of MLV to mA3 is not mediated by the exclusion of APOBEC from the virus particle. The nature of its resistance and the mechanism of inactivation of MLV by mA3 are completely unknown.