Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David DeShazer is active.

Publication


Featured researches published by David DeShazer.


Annual Review of Microbiology | 2010

Molecular Insights into Burkholderia pseudomallei and Burkholderia mallei Pathogenesis

Edouard E. Galyov; Paul J. Brett; David DeShazer

Burkholderia pseudomallei and Burkholderia mallei are closely related gram-negative bacteria that can cause serious diseases in humans and animals. This review summarizes the current and rapidly expanding knowledge on the specific virulence factors employed by these pathogens and their roles in the pathogenesis of melioidosis and glanders. In particular, the contributions of recently identified virulence factors are described in the context of the intracellular lifestyle of these pathogens. Throughout this review, unique and shared virulence features of B. pseudomallei and B. mallei are discussed.


Molecular Microbiology | 2007

Type VI secretion is a major virulence determinant in Burkholderia mallei

Mark A. Schell; Ricky L. Ulrich; Wilson J. Ribot; Ernst E. Brueggemann; Harry B. Hines; Dan Chen; Lyla Lipscomb; H. Stanley Kim; Jan Mrázek; William C. Nierman; David DeShazer

Burkholderia mallei is a host‐adapted pathogen and a category B biothreat agent. Although the B. mallei VirAG two‐component regulatory system is required for virulence in hamsters, the virulence genes it regulates are unknown. Here we show with expression profiling that overexpression of virAG resulted in transcriptional activation of ∼60 genes, including some involved in capsule production, actin‐based intracellular motility, and type VI secretion (T6S). The 15 genes encoding the major sugar component of the homopolymeric capsule were up‐expressed > 2.5‐fold, but capsule was still produced in the absence of virAG. Actin tail formation required virAG as well as bimB, bimC and bimE, three previously uncharacterized genes that were activated four‐ to 15‐fold when VirAG was overproduced. Surprisingly, actin polymerization was found to be dispensable for virulence in hamsters. In contrast, genes encoding a T6S system were up‐expressed as much as 30‐fold and mutations in this T6S gene cluster resulted in strains that were avirulent in hamsters. SDS‐PAGE and mass spectrometry demonstrated that BMAA0742 was secreted by the T6S system when virAG was overexpressed. Purified His‐tagged BMAA0742 was recognized by glanders antiserum from a horse, a human and mice, indicating that this Hcp‐family protein is produced in vivo during infection.


Infection and Immunity | 2001

Detection of Bacterial Virulence Genes by Subtractive Hybridization: Identification of Capsular Polysaccharide of Burkholderia pseudomallei as a Major Virulence Determinant

Shauna Reckseidler; David DeShazer; Pamela A. Sokol; Donald E. Woods

ABSTRACT Burkholderia pseudomallei, the etiologic agent of melioidosis, is responsible for a broad spectrum of illnesses in humans and animals particularly in Southeast Asia and northern Australia, where it is endemic. Burkholderia thailandensisis a nonpathogenic environmental organism closely related to B. pseudomallei. Subtractive hybridization was carried out between these two species to identify genes encoding virulence determinants in B. pseudomallei. Screening of the subtraction library revealed A-T-rich DNA sequences unique toB. pseudomallei, suggesting they may have been acquired by horizontal transfer. One of the subtraction clones, pDD1015, encoded a protein with homology to a glycosyltransferase fromPseudomonas aeruginosa. This gene was insertionally inactivated in wild-type B. pseudomallei to create SR1015. It was determined by enzyme-linked immunosorbent assay and immunoelectron microscopy that the inactivated gene was involved in the production of a major surface polysaccharide. The 50% lethal dose (LD50) for wild-type B. pseudomallei is <10 CFU; the LD50 for SR1015 was determined to be 3.5 × 105 CFU, similar to that of B. thailandensis (6.8 × 105CFU). DNA sequencing of the region flanking the glycosyltransferase gene revealed open reading frames similar to capsular polysaccharide genes in Haemophilus influenzae,Escherichia coli, and Neisseria meningitidis. In addition, DNA from Burkholderia mallei andBurkholderia stabilis hybridized to a glycosyltransferase fragment probe, and a capsular structure was identified on the surface of B. stabilis via immunoelectron microscopy. Thus, the combination of PCR-based subtractive hybridization, insertional inactivation, and animal virulence studies has facilitated the identification of an important virulence determinant in B. pseudomallei.


Infection and Immunity | 2011

The Cluster 1 Type VI Secretion System Is a Major Virulence Determinant in Burkholderia pseudomallei

Mary N. Burtnick; Paul J. Brett; Sarah V. Harding; Sarah A. Ngugi; Wilson J. Ribot; Narisara Chantratita; Angelo Scorpio; Timothy S. Milne; Rachel E. Dean; David L. Fritz; Sharon J. Peacock; Prior Jl; Timothy P. Atkins; David DeShazer

ABSTRACT The Burkholderia pseudomallei K96243 genome encodes six type VI secretion systems (T6SSs), but little is known about the role of these systems in the biology of B. pseudomallei. In this study, we purified recombinant Hcp proteins from each T6SS and tested them as vaccine candidates in the BALB/c mouse model of melioidosis. Recombinant Hcp2 protected 80% of mice against a lethal challenge with K96243, while recombinant Hcp1, Hcp3, and Hcp6 protected 50% of mice against challenge. Hcp6 was the only Hcp constitutively produced by B. pseudomallei in vitro; however, it was not exported to the extracellular milieu. Hcp1, on the other hand, was produced and exported in vitro when the VirAG two-component regulatory system was overexpressed in trans. We also constructed six hcp deletion mutants (Δhcp1 through Δhcp6) and tested them for virulence in the Syrian hamster model of infection. The 50% lethal doses (LD50s) for the Δhcp2 through Δhcp6 mutants were indistinguishable from K96243 (<10 bacteria), but the LD50 for the Δhcp1 mutant was >103 bacteria. The hcp1 deletion mutant also exhibited a growth defect in RAW 264.7 macrophages and was unable to form multinucleated giant cells in this cell line. Unlike K96243, the Δhcp1 mutant was only weakly cytotoxic to RAW 264.7 macrophages 18 h after infection. The results suggest that the cluster 1 T6SS is essential for virulence and plays an important role in the intracellular lifestyle of B. pseudomallei.


BMC Genomics | 2005

Bacterial genome adaptation to niches: Divergence of the potential virulence genes in three Burkholderia species of different survival strategies

H. Stanley Kim; Mark A. Schell; Yan Yu; Ricky L. Ulrich; Saul Sarria; William C. Nierman; David DeShazer

BackgroundTwo closely related species Burkholderia mallei (Bm) and Burkholderia pseudomallei (Bp) are serious human health hazards and are potential bio-warfare agents, whereas another closely related species Burkholderia thailandensis (Bt) is a non-pathogenic saprophyte. To investigate the genomic factors resulting in such a dramatic difference, we first identified the Bm genes responsive to the mouse environment, and then examined the divergence of these genes in Bp and Bt.ResultsThe genes down-expressed, which largely encode cell growth-related proteins, are conserved well in all three species, whereas those up-expressed, which include potential virulence genes, are less well conserved or absent notably in Bt. However, a substantial number of up-expressed genes is still conserved in Bt. Bm and Bp further diverged from each other in a small number of genes resulting from unit number changes in simple sequence repeats (ssr) in the homologs.ConclusionOur data suggest that divergent evolution of a small set of genes, rather than acquisition or loss of pathogenic islands, is associated with the development of different life styles in these bacteria of similar genomic contents. Further divergence between Bm and Bp mediated by ssr changes may reflect different adaptive processes of Bm and Bp fine-tuning into their host environments.


BMC Microbiology | 2006

Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis.

Yiting Yu; H. Stanley Kim; Hui Hoon Chua; Chi Ho Lin; Siew Hoon Sim; Daoxun Lin; Alan Derr; Reinhard Engels; David DeShazer; Bruce W. Birren; William C. Nierman; Patrick Tan

BackgroundThe Gram-negative bacterium Burkholderia pseudomallei (Bp) is the causative agent of the human disease melioidosis. To understand the evolutionary mechanisms contributing to Bp virulence, we performed a comparative genomic analysis of Bp K96243 and B. thailandensis (Bt) E264, a closely related but avirulent relative.ResultsWe found the Bp and Bt genomes to be broadly similar, comprising two highly syntenic chromosomes with comparable numbers of coding regions (CDs), protein family distributions, and horizontally acquired genomic islands, which we experimentally validated to be differentially present in multiple Bt isolates. By examining species-specific genomic regions, we derived molecular explanations for previously-known metabolic differences, discovered potentially new ones, and found that the acquisition of a capsular polysaccharide gene cluster in Bp, a key virulence component, is likely to have occurred non-randomly via replacement of an ancestral polysaccharide cluster. Virulence related genes, in particular members of the Type III secretion needle complex, were collectively more divergent between Bp and Bt compared to the rest of the genome, possibly contributing towards the ability of Bp to infect mammalian hosts. An analysis of pseudogenes between the two species revealed that protein inactivation events were significantly biased towards membrane-associated proteins in Bt and transcription factors in Bp.ConclusionOur results suggest that a limited number of horizontal-acquisition events, coupled with the fine-scale functional modulation of existing proteins, are likely to be the major drivers underlying Bp virulence. The extensive genomic similarity between Bp and Bt suggests that, in some cases, Bt could be used as a possible model system for studying certain aspects of Bp behavior.


Infection and Immunity | 2004

Contribution of Gene Loss to the Pathogenic Evolution of Burkholderia pseudomallei and Burkholderia mallei

Richard Moore; Shauna L. Reckseidler-Zenteno; Heenam Stanley Kim; William C. Nierman; Yan Yu; Apichai Tuanyok; Jonathan Warawa; David DeShazer; Donald E. Woods

ABSTRACT Burkholderia pseudomallei is the causative agent of melioidosis. Burkholderia thailandensis is a closely related species that can readily utilize l-arabinose as a sole carbon source, whereas B. pseudomallei cannot. We used Tn5-OT182 mutagenesis to isolate an arabinose-negative mutant of B. thailandensis. Sequence analysis of regions flanking the transposon insertion revealed the presence of an arabinose assimilation operon consisting of nine genes. Analysis of the B. pseudomallei chromosome showed a deletion of the operon from this organism. This deletion was detected in all B. pseudomallei and Burkholderia mallei strains investigated. We cloned the B. thailandensis E264 arabinose assimilation operon and introduced the entire operon into the chromosome of B. pseudomallei 406e via homologous recombination. The resultant strain, B. pseudomallei SZ5028, was able to utilize l-arabinose as a sole carbon source. Strain SZ5028 had a significantly higher 50% lethal dose for Syrian hamsters compared to the parent strain 406e. Microarray analysis revealed that a number of genes in a type III secretion system were down-regulated in strain SZ5028 when cells were grown in l-arabinose, suggesting a regulatory role for l-arabinose or a metabolite of l-arabinose. These results suggest that the ability to metabolize l-arabinose reduces the virulence of B. pseudomallei and that the genes encoding arabinose assimilation may be considered antivirulence genes. The increase in virulence associated with the loss of these genes may have provided a selective advantage for B. pseudomallei as these organisms adapted to survival in animal hosts.


Emerging Infectious Diseases | 2008

Management of Accidental Laboratory Exposure to Burkholderia pseudomallei and B. mallei

Sharon J. Peacock; Herbert P. Schweizer; David A. B. Dance; Theresa L. Smith; Jay E. Gee; Vanaporn Wuthiekanun; David DeShazer; Ivo Steinmetz; Patrick Tan; Bart J. Currie

The gram-negative bacillus Burkholderia pseudomallei is a saprophyte and the cause of melioidosis. Natural infection is most commonly reported in northeast Thailand and northern Australia but also occurs in other parts of Asia, South America, and the Caribbean. Melioidosis develops after bacterial inoculation or inhalation, often in relation to occupational exposure in areas where the disease is endemic. Clinical infection has a peak incidence between the fourth and fifth decades; with diabetes mellitus, excess alcohol consumption, chronic renal failure, and chronic lung disease acting as independent risk factors. Most affected adults ( approximately 80%) in northeast Thailand, northern Australia, and Malaysia have >/=1 underlying diseases. Symptoms of melioidosis may be exhibited many years after exposure, commonly in association with an alteration in immune status. Manifestations of disease are extremely broad ranging and form a spectrum from rapidly life-threatening sepsis to chronic low-grade infection. A common clinical picture is that of sepsis associated with bacterial dissemination to distant sites, frequently causing concomitant pneumonia and liver and splenic abscesses. Infection may also occur in bone, joints, skin, soft tissue, or the prostate. The clinical symptoms of melioidosis mimic those of many other diseases; thus, differentiating between melioidosis and other acute and chronic bacterial infections, including tuberculosis, is often impossible. Confirmation of the diagnosis relies on good practices for specimen collection, laboratory culture, and isolation of B. pseudomallei. The overall mortality rate of infected persons is 50% in northeast Thailand (35% in children) and 19% in Australia.


Journal of Bacteriology | 2005

Actin-Binding Proteins from Burkholderia mallei and Burkholderia thailandensis Can Functionally Compensate for the Actin-Based Motility Defect of a Burkholderia pseudomallei bimA Mutant

Joanne M. Stevens; Ricky L. Ulrich; Lowrie A. Taylor; Michael W. Wood; David DeShazer; Mark P. Stevens; Edouard E. Galyov

Recently we identified a bacterial factor (BimA) required for actin-based motility of Burkholderia pseudomallei. Here we report that Burkholderia mallei and Burkholderia thailandensis are capable of actin-based motility in J774.2 cells and that BimA homologs of these bacteria can restore the actin-based motility defect of a B. pseudomallei bimA mutant. While the BimA homologs differ in their amino-terminal sequence, they interact directly with actin in vitro and vary in their ability to bind Arp3.


Infection and Immunity | 2004

Type III Secretion: a Virulence Factor Delivery System Essential for the Pathogenicity of Burkholderia mallei

Ricky L. Ulrich; David DeShazer

ABSTRACT By creating mutations in the Burkholderia mallei ATCC 23344 animal pathogen-like type III secretion system (TTSS), this study analyzes the correlation between type III secretion and the pathogenicity of ATCC 23344 in vivo. Mutagenesis demonstrated that a functional TTSS was required for the full pathogenicity of ATCC 23344 in the BALB/c mouse and Syrian hamster models of infection. However, vaccination with each mutant failed to elicit a protective immunity against challenge with wild-type ATCC 23344.

Collaboration


Dive into the David DeShazer's collaboration.

Top Co-Authors

Avatar

David M. Waag

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Ricky L. Ulrich

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Mary N. Burtnick

Rocky Mountain Laboratories

View shared research outputs
Top Co-Authors

Avatar

Paul J. Brett

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kei Amemiya

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge