David Drew
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Drew.
Nature Methods | 2010
Pil Seok Chae; Søren Rasmussen; Rohini R. Rana; Kamil Gotfryd; Richa Chandra; Michael A. Goren; Andrew C. Kruse; Shailika Nurva; Claus J. Loland; Yves Pierre; David Drew; Jean-Luc Popot; Daniel Picot; Brian G. Fox; Lan Guan; Ulrik Gether; Bernadette Byrne; Brian K. Kobilka; Samuel H. Gellman
The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose–neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.
Nature Methods | 2006
David Drew; Mirjam Lerch; Edmund R. S. Kunji; Dirk-Jan Slotboom; Jan-Willem de Gier
Optimizing conditions for the overexpression and purification of membrane proteins for functional and structural studies is usually a laborious and time-consuming process. This process can be accelerated using membrane protein–GFP fusions 1–3 , which allows direct monitoring and visualization of membrane proteins of interest at any stage during overexpression, solubilization and purification (Fig. 1). The exceptionally stable GFP moiety of the fusion protein can be used to detect membrane proteins by observing fluorescence in whole cells during overexpression, with a detection limit as low as 10 µg of GFP per liter of culture, and in solution during solubilization and purification. Notably, the fluorescence of the GFP moiety can also be detected in standard SDS polyacrylamide gels with a detection limit of less than 5 ng of GFP per protein band (Fig. 2). In-gel fluorescence allows assessment of the integrity of membrane protein–GFP fusions and provides a rapid and generic alternative for the notoriously difficult immunoblotting of membrane proteins. With whole-cell and in-gel fluorescence the overexpression potential of many membrane protein–GFP fusions can be rapidly assessed and yields of promising targets can be improved. In this protocol the Escherichia coli BL21(DE3)-pET system—the most widely used (membrane) protein overexpression system—is used as a platform to illustrate the GFP-based method. The methodology described in this protocol can be transferred easily to other systems.
The EMBO Journal | 2011
Simon Newstead; David Drew; Alexander D. Cameron; Vincent L. G. Postis; Xiaobing Xia; Philip W. Fowler; Jean C. Ingram; Elisabeth P. Carpenter; Mark S.P. Sansom; Michael J. McPherson; Stephen A. Baldwin; So Iwata
PepT1 and PepT2 are major facilitator superfamily (MFS) transporters that utilize a proton gradient to drive the uptake of di‐ and tri‐peptides in the small intestine and kidney, respectively. They are the major routes by which we absorb dietary nitrogen and many orally administered drugs. Here, we present the crystal structure of PepTSo, a functionally similar prokaryotic homologue of the mammalian peptide transporters from Shewanella oneidensis. This structure, refined using data up to 3.6 Å resolution, reveals a ligand‐bound occluded state for the MFS and provides new insights into a general transport mechanism. We have located the peptide‐binding site in a central hydrophilic cavity, which occludes a bound ligand from both sides of the membrane. Residues thought to be involved in proton coupling have also been identified near the extracellular gate of the cavity. Based on these findings and associated kinetic data, we propose that PepTSo represents a sound model system for understanding mammalian peptide transport as catalysed by PepT1 and PepT2.
Nature Protocols | 2008
David Drew; Simon Newstead; Yo Sonoda; Hyun Kim; Gunnar von Heijne; So Iwata
It is often difficult to produce eukaryotic membrane proteins in large quantities, which is a major obstacle for analyzing their biochemical and structural features. To date, yeast has been the most successful heterologous overexpression system in producing eukaryotic membrane proteins for high-resolution structural studies. For this reason, we have developed a protocol for rapidly screening and purifying eukaryotic membrane proteins in the yeast Saccharomyces cerevisiae. Using this protocol, in 1 week many genes can be rapidly cloned by homologous recombination into a 2 μ GFP-fusion vector and their overexpression potential determined using whole-cell and in-gel fluorescence. The quality of the overproduced eukaryotic membrane protein-GFP fusions can then be evaluated over several days using confocal microscopy and fluorescence size-exclusion chromatography (FSEC). This protocol also details the purification of targets that pass our quality criteria, and can be scaled up for a large number of eukaryotic membrane proteins in either an academic, structural genomics or commercial environment.
FEBS Letters | 2001
David Drew; Gunnar von Heijne; Pär Nordlund; Jan-Willem de Gier
Escherichia coli is one of the most widely used vehicles to overexpress membrane proteins (MPs). Currently, it is not possible to predict if an overexpressed MP will end up in the cytoplasmic membrane or in inclusion bodies. Overexpression of MPs in the cytoplasmic membrane is strongly favoured to overexpression in inclusion bodies, since it is relatively easy to isolate MPs from membranes and usually impossible to isolate them from inclusion bodies. Here we show that green fluorescent protein (GFP), when fused to an overexpressed MP, can be used as an indicator to monitor membrane insertion versus inclusion body formation of overexpressed MPs in E. coli. Furthermore, we show that an overexpressed MP can be recovered from a MP–GFP fusion using a site specific protease. This makes GFP an excellent tool for large‐scale MP target selection in structural genomics projects.
The EMBO Journal | 2012
Nicolae Solcan; Jane Kwok; Philip W. Fowler; Alexander D. Cameron; David Drew; So Iwata; Simon Newstead
Short chain peptides are actively transported across membranes as an efficient route for dietary protein absorption and for maintaining cellular homeostasis. In mammals, peptide transport occurs via PepT1 and PepT2, which belong to the proton‐dependent oligopeptide transporter, or POT family. The recent crystal structure of a bacterial POT transporter confirmed that they belong to the major facilitator superfamily of secondary active transporters. Despite the functional characterization of POT family members in bacteria, fungi and mammals, a detailed model for peptide recognition and transport remains unavailable. In this study, we report the 3.3‐Å resolution crystal structure and functional characterization of a POT family transporter from the bacterium Streptococcus thermophilus. Crystallized in an inward open conformation the structure identifies a hinge‐like movement within the C‐terminal half of the transporter that facilitates opening of an intracellular gate controlling access to a central peptide‐binding site. Our associated functional data support a model for peptide transport that highlights the importance of salt bridge interactions in orchestrating alternating access within the POT family.
Nature | 2011
Nien-Jen Hu; So Iwata; Alexander D. Cameron; David Drew
High cholesterol levels greatly increase the risk of cardiovascular disease. About 50 per cent of cholesterol is eliminated from the body by its conversion into bile acids. However, bile acids released from the bile duct are constantly recycled, being reabsorbed in the intestine by the apical sodium-dependent bile acid transporter (ASBT, also known as SLC10A2). It has been shown in animal models that plasma cholesterol levels are considerably lowered by specific inhibitors of ASBT, and ASBT is thus a target for hypercholesterolaemia drugs. Here we report the crystal structure of a bacterial homologue of ASBT from Neisseria meningitidis (ASBTNM) at 2.2 Å. ASBTNM contains two inverted structural repeats of five transmembrane helices. A core domain of six helices harbours two sodium ions, and the remaining four helices pack in a row to form a flat, ‘panel’-like domain. Overall, the architecture of the protein is remarkably similar to the sodium/proton antiporter NhaA, despite having no detectable sequence homology. The ASBTNM structure was captured with the substrate taurocholate present, bound between the core and panel domains in a large, inward-facing, hydrophobic cavity. Residues near this cavity have been shown to affect the binding of specific inhibitors of human ASBT. The position of the taurocholate molecule, together with the molecular architecture, suggests the rudiments of a possible transport mechanism.
Protein Science | 2005
David Drew; Dirk-Jan Slotboom; Giulia Friso; Torsten Reda; Pierre Genevaux; Mikaela Rapp; Nadja M. Meindl-Beinker; Wietske Lambert; Mirjam Lerch; Daniel O. Daley; Klaas-Jan van Wijk; Judy Hirst; Edmund R. S. Kunji; Jan-Willem de Gier
We describe a generic, GFP‐based pipeline for membrane protein overexpression and purification in Escherichia coli. We exemplify the use of the pipeline by the identification and characterization of E. coli YedZ, a new, membrane‐integral flavocytochrome. The approach is scalable and suitable for high‐throughput applications. The GFP‐based pipeline will facilitate the characterization of the E. coli membrane proteome and serves as an important reference for the characterization of other membrane proteomes.
Biochimica et Biophysica Acta | 2003
David Drew; Linda Fröderberg; Louise Baars; Jan-Willem de Gier
The bacterium Escherichia coli is one of the most popular model systems to study the assembly of membrane proteins of the so-called helix-bundle class. Here, based on this system, we review and discuss what is currently known about the assembly of these membrane proteins. In addition, we will briefly review and discuss how E. coli has been used as a vehicle for the overexpression of membrane proteins.
Structure | 2011
Yo Sonoda; Simon Newstead; Nien-Jen Hu; Yilmaz Alguel; Emmanuel Nji; Konstantinos Beis; Shoko Yashiro; Chiara Lee; James Leung; Alexander D. Cameron; Bernadette Byrne; So Iwata; David Drew
Summary Obtaining well-ordered crystals is a major hurdle to X-ray structure determination of membrane proteins. To facilitate crystal optimization, we investigated the detergent stability of 24 eukaryotic and prokaryotic membrane proteins, predominantly transporters, using a fluorescent-based unfolding assay. We have benchmarked the stability required for crystallization in small micelle detergents, as they are statistically more likely to lead to high-resolution structures. Using this information, we have been able to obtain well-diffracting crystals for a number of sodium and proton-dependent transporters. By including in the analysis seven membrane proteins for which structures are already known, AmtB, GlpG, Mhp1, GlpT, EmrD, NhaA, and LacY, it was further possible to demonstrate an overall trend between protein stability and structural resolution. We suggest that by monitoring membrane protein stability with reference to the benchmarks described here, greater efforts can be placed on constructs and conditions more likely to yield high-resolution structures.