David Duneau
University of Basel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Duneau.
BMC Biology | 2011
David Duneau; Pepijn Luijckx; Frida Ben-Ami; Christian Laforsch; Dieter Ebert
BackgroundInfection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them.ResultsUsing the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes.ConclusionsOur results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different steps can explain different aspects of the coevolutionary dynamics of the system: the properties of the attachment step, explaining the rapid evolution of infectivity and the properties of later parasite proliferation explaining the evolution of virulence. Our study underlines the importance of resolving the infection process in order to better understand host-parasite interactions.
Evolutionary Applications | 2010
Elena Gómez-Díaz; Paul F. Doherty; David Duneau; Karen D. McCoy
Vector organisms are implicated in the transmission of close to a third of all infectious diseases. In many cases, multiple vectors (species or populations) can participate in transmission but may contribute differently to disease ecology and evolution. The presence of cryptic vector populations can be particularly problematic as differences in infection can be difficult to evaluate and may lead to erroneous evolutionary and epidemiological inferences. Here, we combine site‐occupancy modeling and molecular assays to evaluate patterns of infection in the marine cycle of Lyme borreliosis, involving colonial seabirds, the tick Ixodes uriae, and bacteria of the Borrelia burgdorferi s.l. complex. In this cycle, the tick vector consists of multiple, cryptic (phenotypically undistinguishable but genetically distinct) host races that are frequently found in sympatry. Our results show that bacterial detection varies strongly among tick races leading to vector‐specific biases if raw counts are used to calculate Borrelia prevalence. These differences are largely explained by differences in infection intensity among tick races. After accounting for detection probabilities, we found that overall prevalence in this system is higher than previously suspected and that certain vector–host combinations likely contribute more than others to the local dynamics and large‐scale dispersal of Borrelia spirochetes. These results highlight the importance of evaluating vector population structure and accounting for detection probability when trying to understand the evolutionary ecology of vector‐borne diseases.
Current Biology | 2013
Pepijn Luijckx; Harris Fienberg; David Duneau; Dieter Ebert
The maintenance of genetic variation and sex despite its costs has long puzzled biologists. A popular idea, the Red Queen Theory, is that under rapid antagonistic coevolution between hosts and their parasites, the formation of new rare host genotypes through sex can be advantageous as it creates host genotypes to which the prevailing parasite is not adapted. For host-parasite coevolution to lead to an ongoing advantage for rare genotypes, parasites should infect specific host genotypes and hosts should resist specific parasite genotypes. The most prominent genetics capturing such specificity are matching-allele models (MAMs), which have the key feature that resistance for two parasite genotypes can reverse by switching one allele at one host locus. Despite the lack of empirical support, MAMs have played a central role in the theoretical development of antagonistic coevolution, local adaptation, speciation, and sexual selection. Using genetic crosses, we show that resistance of the crustacean Daphnia magna against the parasitic bacterium Pasteuria ramosa follows a MAM. Simulation results show that the observed genetics can explain the maintenance of genetic variation and contribute to the maintenance of sex in the facultatively sexual host as predicted by the Red Queen Theory.
Infection, Genetics and Evolution | 2008
David Duneau; Thierry Boulinier; Elena Gómez-Díaz; Aevar Petersen; Torkild Tveraa; Robert T. Barrett; Karen D. McCoy
A potential role of seabirds in spreading Lyme disease (LB) spirochetes over large spatial scales was suggested more than 10 years ago when Borrelia garinii was observed in marine birds of both hemispheres. Since then, there have been few studies examining the diversity of Borrelia spp. circulating in seabirds, or the potential interaction between terrestrial and marine disease cycles. To explore these aspects, we tested 402 Ixodes uriae ticks collected from five colonial seabird species by amplification of the flaB gene. Both the average prevalence (26.0%+/-3.9) and diversity of LB spirochetes was high. Phylogenetic analyses grouped marine isolates in two main clades: one associated with B. garinii and another with B. lusitaniae, a genospecies typically associated with lizards. One sequence also clustered most closely with B. burgdorferi sensu stricto. Prevalence in ticks varied both among seabird species within colonies and among colonies. However, there was no clear association between different Borrelia isolates and a given seabird host species. Our findings indicate that LB spirochetes circulating in the marine system are more diverse than previously described and support the hypothesis that seabirds may be an important component in the global epidemiology and evolution of Lyme disease. Future work should help determine the extent to which isolates are shared between marine and terrestrial systems.
PLOS Biology | 2012
David Duneau; Dieter Ebert
Disease expression and prevalence often vary in the different sexes of the host. This is typically attributed to innate differences of the two sexes but specific adaptations by the parasite to one or other host sex may also contribute to these observations.
Heredity | 2012
Pepijn Luijckx; Harris Fienberg; David Duneau; Dieter Ebert
The influence of host and parasite genetic background on infection outcome is a topic of great interest because of its pertinence to theoretical issues in evolutionary biology. In the present study, we use a classical genetics approach to examine the mode of inheritance of infection outcome in the crustacean Daphnia magna when exposed to the bacterial parasite Pasteuria ramosa. In contrast to previous studies in this system, we use a clone of P. ramosa, not field isolates, which allows for a more definitive interpretation of results. We test parental, F1, F2, backcross and selfed parental clones (total 284 genotypes) for susceptibility against a clone of P. ramosa using two different methods, infection trials and the recently developed attachment test. We find that D. magna clones reliably exhibit either complete resistance or complete susceptibility to P. ramosa clone C1 and that resistance is dominant, and inherited in a pattern consistent with Mendelian segregation of a single-locus with two alleles. The finding of a single host locus controlling susceptibility to P. ramosa suggests that the previously observed genotype–genotype interactions in this system have a simple genetic basis. This has important implications for the outcome of host–parasite co-evolution. Our results add to the growing body of evidence that resistance to parasites in invertebrates is mostly coded by one or few loci with dominance.
BMC Biology | 2012
David Duneau; Pepijn Luijckx; Ludwig Ruder; Dieter Ebert
BackgroundMales and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna.ResultsWe show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite.ConclusionsWe show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.
Behavioral Ecology | 2011
Fleur Ponton; Fernando Otálora-Luna; Thierry Lefèvre; Patrick M. Guerin; Camille Lebarbenchon; David Duneau; David G. Biron; Frédéric Thomas
One of the most fascinating examples of parasite-induced host manipulation is that of hairworms, first, because they induce a spectacular “suicide” water-seeking behavior in their terrestrial insect hosts and, second, because the emergence of the parasite is not lethal per se for the host that can live several months following parasite release. The mechanisms hairworms use to increase the encounter rate between their host and water remain, however, poorly understood. Considering the selective landscape in which nematomorph manipulation has evolved as well as previously obtained proteomics data, we predicted that crickets harboring mature hairworms would display a modified behavioral response to light. Since following parasite emergence in water, the cricket host and parasitic worm do not interact physiologically anymore, we also predicted that the host would recover from the modified behaviors. We examined the effect of hairworm infection on different behavioral responses of the host when stimulated by light to record responses from uninfected, infected, and ex-infected crickets. We showed that hairworm infection fundamentally modifies cricket behavior by inducing directed responses to light, a condition from which they mostly recover once the parasite is released. This study supports the idea that host manipulation by parasites is subtle, complex, and multidimensional.
Parasitology | 2006
Fleur Ponton; Camille Lebarbenchon; Thierry Lefèvre; Frédéric Thomas; David Duneau; Laurent Marché; L. Renault; David P. Hughes; David G. Biron
One of the most fascinating anti-predator responses displayed by parasites is that of hairworms (Nematomorpha). Following the ingestion of the insect host by fish or frogs, the parasitic worm is able to actively exit both its host and the gut of the predator. Using as a model the hairworm, Paragordius tricuspidatus, (parasitizing the cricket Nemobius sylvestris) and the fish predator Micropterus salmoïdes, we explored, with proteomics tools, the physiological basis of this anti-predator response. By examining the proteome of the parasitic worm, we detected a differential expression of 27 protein spots in those worms able to escape the predator. Peptide Mass Fingerprints of candidate protein spots suggest the existence of an intense muscular activity in escaping worms, which functions in parallel with their distinctive biology. In a second step, we attempted to determine whether the energy expended by worms to escape the predator is traded off against its reproductive potential. Remarkably, the number of offspring produced by worms having escaped a predator was not reduced compared with controls.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
David Duneau; Dieter Ebert
Parasitic infections consist of a succession of steps during which hosts and parasites interact in specific manners. At each step, hosts can use diverse defence mechanisms to counteract the parasites attempts to invade and exploit them. Of these steps, the penetration of parasites into the host is a key step for a successful infection and the epithelium is the first line of host defence. The shedding of this protective layer (moulting) is a crucial feature in the life cycle of several invertebrate and vertebrate taxa, and is generally considered to make hosts vulnerable to parasites and predators. Here, we used the crustacean Daphnia magna to test whether moulting influences the likelihood of infection by the castrating bacterium Pasteuria ramosa. This parasite is known to attach to the host cuticula before penetrating into its body. We found that the likelihood of successful parasite infection is greatly reduced if the host moults within 12 h after parasite exposure. Thus, moulting is beneficial for the host being exposed to this parasite. We further show that exposure to the parasite does not induce hosts to moult earlier. We discuss the implications of our findings for host and parasite evolution and epidemiology.