Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Ashpis is active.

Publication


Featured researches published by David E. Ashpis.


41st Aerospace Sciences Meeting and Exhibit | 2003

Demonstration of Separation Delay With Glow-Discharge Plasma Actuators

Lennart S. Hultgren; David E. Ashpis

The NASA STI Program Office . . . in ProfileSince its founding, NASA has been dedicated tothe advancement of aeronautics and spacescience. The NASA Scientific and TechnicalInformation (STI) Program Office plays a key partin helping NASA maintain this important role.The NASA STI Program Office is operated byLangley Research Center, the Lead Center forNASA’s scientific and technical information. TheNASA STI Program Office provides access to theNASA STI Database, the largest collection ofaeronautical and space science STI in the world.The Program Office is also NASA’s institutionalmechanism for disseminating the results of itsresearch and development activities. These resultsare published by NASA in the NASA STI ReportSeries, which includes the following report types:• TECHNICAL PUBLICATION. Reports ofcompleted research or a major significantphase of research that present the results ofNASA programs and include extensive dataor theoretical analysis. Includes compilationsof significant scientific and technical data andinformation deemed to be of continuingreference value. NASA’s counterpart of peer-reviewed formal professional papers buthas less stringent limitations on manuscriptlength and extent of graphic presentations.• TECHNICAL MEMORANDUM. Scientificand technical findings that are preliminary orof specialized interest, e.g., quick releasereports, working papers, and bibliographiesthat contain minimal annotation. Does notcontain extensive analysis.• CONTRACTOR REPORT. Scientific andtechnical findings by NASA-sponsoredcontractors and grantees.• CONFERENCE PUBLICATION. Collectedpapers from scientific and technicalconferences, symposia, seminars, or othermeetings sponsored or cosponsored byNASA.• SPECIAL PUBLICATION. Scientific,technical, or historical information fromNASA programs, projects, and missions,often concerned with subjects havingsubstantial public interest.• TECHNICAL TRANSLATION. English-language translations of foreign scientificand technical material pertinent to NASA’smission.Specialized services that complement the STIProgram Office’s diverse offerings includecreating custom thesauri, building customizeddatabases, organizing and publishing researchresults . . . even providing videos.For more information about the NASA STIProgram Office, see the following:• Access the NASA STI Program Home Pageat


Journal of Turbomachinery-transactions of The Asme | 2003

Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation

Y. B. Suzen; P. G. Huang; Lennart S. Hultgren; David E. Ashpis

A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menters two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.


Journal of Physics D | 2008

Force measurements of single and double barrier DBD plasma actuators in quiescent air

Alan R. Hoskinson; Noah Hershkowitz; David E. Ashpis

We present the results of our experimental measurements of how variations in the discharge geometry of surface-mounted dielectric barrier discharges (DBDs) affect the force transferred to atmospheric pressure air. Our studies include both single barrier plasma actuators (one electrode insulated) and double barrier plasma actuators (both electrodes insulated) operated in quiescent air. Stagnation probe measurements of the induced air flow and direct force measurements using an electronic balance show that, for both actuator types, parallel time-averaged forces increase as the high voltage electrode diameter decreases. For single barrier actuators, this increase is exponential rather than linear as previously reported in the literature. The data from the two measurement techniques are directly proportional to one another. When the variation of velocity and pressure on all sides of an actuator are considered, the techniques show quantitative agreement.


50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition | 2012

Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

David E. Ashpis; Matthew C. Laun; Elmer L. Griebeler

The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.


Journal of Fluids Engineering-transactions of The Asme | 2005

On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

M. T. Schobeiri; B. Öztürk; David E. Ashpis

The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the physics of the separation phenomenon under periodic unsteady wake flow. Several physical mechanisms are discussed.


47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition | 2009

Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

Alan R. Hoskinson; Noah Hershkowitz; David E. Ashpis

We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.


52nd Aerospace Sciences Meeting | 2014

Dielectric Barrier Discharge (DBD) Plasma Actuators Thrust-Measurement Methodology Incorporating New Anti-Thrust Hypothesis

David E. Ashpis; Matthew C. Laun

We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant nonrepeatability of the results, we devised -a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust or “anti-thrust”, at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the par-thrust abolic anticurve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables theseparation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a large diameter, grounded, metal sleeve.


Journal of Turbomachinery-transactions of The Asme | 2007

Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Intermittency Behavior Along the Suction Surface of a Low Pressure Turbine Blade

M. T. Schobeiri; B. Öztürk; David E. Ashpis

The paper experimentally studies the effects of periodic unsteady wake flow and Reynolds number on boundary layer development, separation, reattachment, and the intermittency behavior along the suction surface of a low pressure turbine blade. Extensive unsteady boundary layer experiments were carried out at Reynolds numbers of 110,000 and 150,000 based on suction surface length and exit velocity. One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The analysis of the experimental data reveals details of boundary layer separation dynamics which is essential for understanding the physics of the separation phenomenon under periodic unsteady wake flow and different Reynolds numbers. To provide a complete picture of the transition process and separation dynamics, extensive intermittency analysis was conducted. Ensemble-averaged maximum and minimum intermittency functions were determined, leading to the relative intermittency function. In addition, the detailed intermittency analysis was aimed at answering the question as to whether the relative intermittency of a separated flow fulfills the universality criterion.


AIAA Journal | 2003

Optimal disturbances in boundary layers subject to streamwise pressure gradient

Anatoli Tumin; David E. Ashpis

Laminar-turbulent transition in shear flows is still an enigma in the area of fluid mechanics. The conventional explanation of the phenomenon is based on the instability of the shear flow with respect to infinitesimal disturbances. The conventional hydrodynamic stability theory deals with the analysis of normal modes that might be unstable. The latter circumstance is accompanied by an exponential growth of the disturbances that might lead to laminar-turbulent transition. Nevertheless, in many cases, the transition scenario bypasses the exponential growth stage associated with the normal modes. This type of transition is called bypass transition. An understanding of the phenomenon has eluded us to this day. One possibility is that bypass transition is associated with so-called algebraic (non-modal)


42nd AIAA Plasmadynamics and Lasers Conference | 2011

DBD Plasma Actuators for Flow Control in Air Vehicles and Jet Engines - Simulation of Flight Conditions in Test Chambers by Density Matching

David E. Ashpis; Douglas Thurman

Dielectric Barrier Discharge (DBD) Plasma actuators for active flow control in aircraft and jet engines need to be tested in the laboratory to characterize their performance at flight operating conditions. DBD plasma actuators generate a wall-jet electronically by creating weakly ionized plasma, therefore their performance is affected by gas discharge properties, which, in turn, depend on the pressure and temperature at the actuator placement location. Characterization of actuators is initially performed in a laboratory chamber without external flow. The pressure and temperature at the actuator flight operation conditions need to be simultaneously set in the chamber. A simplified approach is desired. It is assumed that the plasma discharge depends only on the gas density, while other temperature effects are assumed to be negligible. Therefore, tests can be performed at room temperature with chamber pressure set to yield the same density as in operating flight conditions. The needed chamber pressures are shown for altitude flight of an air vehicle and for jet engines at sea-level takeoff and altitude cruise conditions. Atmospheric flight conditions are calculated from standard atmosphere with and without shock waves. The engine data was obtained from four generic engine models; 300-, 150-, and 50-passenger (PAX) aircraft engines, and a military jet-fighter engine. The static and total pressure, temperature, and density distributions along the engine were calculated for sea-level takeoff and for altitude cruise conditions. The corresponding chamber pressures needed to test the actuators were calculated. The results show that, to simulate engine component flows at in-flight conditions, plasma actuator should be tested over a wide range of pressures. For the four model engines the range is from 12.4 to 0.03 atm, depending on the placement of the actuator in the engine. For example, if a DBD plasma actuator is to be placed at the compressor exit of a 300 PAX engine, it has to be tested at 12.4 atm for takeoff, and 6 atm for cruise conditions. If it is to be placed at the low-pressure turbine, it has to be tested at 0.5 and 0.2 atm, respectively. These results have implications for the feasibility and design of DBD plasma actuators for jet engine flow control applications. In addition, the distributions of unit Reynolds number, Mach number, and velocity along the engine are provided. The engine models are non-proprietary and this information can be used for evaluation of other types of actuators and for other purposes.

Collaboration


Dive into the David E. Ashpis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan R. Hoskinson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Noah Hershkowitz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Eric Forgoston

Montclair State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge