Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. García is active.

Publication


Featured researches published by David E. García.


Nature | 1996

Modulation of Ca2+ channels by G-protein beta gamma subunits.

Stefan Herlitze; David E. García; Ken Mackie; Bertil Hille; Todd Scheuer; William A. Catterall

CALCIUM ions entering cells through voltage-gated Ca2+ channels initiate rapid release of neurotransmitters and secretion of hormones. Ca2+ currents can be inhibited in many cell types by neurotransmitters acting through G proteins via a membrane-delimited pathway independently of soluble intracellular messengers1–4. Inhibition is typically caused by a positive shift in the voltage dependence and a slowing of channel activation and is relieved by strong depolarization resulting in facilitation of Ca2+currents1,4–6. This pathway regulates the activity of N-type and P/ Q-type Ca2+ channels1,2,7, which are localized in presynaptic terminals8,9 and participate in neurotransmitter release10–13. Synaptic transmission is inhibited by neurotransmitters through this mechanism1,4. G-protein a subunits confer specificity in receptor coupling1–4,14–17, but it is not known whether the Gα or Gβγ subunits are responsible for modulation of Ca2+channels. Here we report that Gβγ subunits can modulate Ca2+ channels. Transfection of Gβγ into cells expressing P/Q-type Ca2+ channels induces modulation like that caused by activation of G protein-coupled receptors, but Gα subunits do not. Similarly, injection or expression of Gβγ subunits in sympathetic ganglion neurons induces facilitation and occludes modulation of N-type channels by noradrenaline, but Gα subunits do not. In both cases, the Gγ subunit is ineffective by itself, but overexpression of exogenous Gβ subunits is sufficient to cause channel modulation.


Cell and Tissue Research | 1998

The role of voltage-gated Ca2+ channels in neurite growth of cultured chromaffin cells induced by extremely low frequency (ELF) magnetic field stimulation

Consuelo Morgado-Valle; Leticia Verdugo-Díaz; David E. García; Christian Morales-Orozco; René Drucker-Colín

Abstract The ion Ca2+ has been shown to play an important role in a wide variety of cellular functions, one of them being related to cell differentiation in which nerve growth factor (NGF) is involved. Chromaffin cells obtained from adrenals of 2- to 3-day-old rats were cultured for 7 days. During this time, these cells were subjected to the application of either NGF or extremely low frequency magnetic fields (ELF MF). Since this induced cell differentiation toward neuronal-like cells, the mechanism by which this occurred was studied. When the L-Ca2+ channel blocker nifedipine was applied simultaneously with ELF MF, this differentiation did not take place, but it did when an N-Ca2+ channel blocker was used. In contrast, none of the Ca2+ channel blockers prevented differentiation in the presence of NGF. In addition, Bay K-8644, an L-Ca2+ channel agonist, increased both the percentage of differentiated cells and neurite length in the presence of ELF MF. This effect was much weaker in the presence of NGF. [3H]-noradrenaline release was reduced by nifedipine, suggesting an important role for L-Ca2+ channels in neurotransmitter release. Total high voltage Ca2+ currents were significantly increased in ELF MF-treated cells with NGF, but these currents in ELF MF-treated cells were more sensitive to nifedipine. Amperometric analysis of catecholamine release revealed that the KCl-induced activity of cells stimulated to differentiate by ELF MF is highly sensitive to L-type Ca2+ channel blockers. A possible mechanism to explain the way in which the application of magnetic fields can induce differentation of chromaffin cells into neuronal-like cells is proposed.


Nature | 1996

Modulation of Ca2+ channels βγ G-protein py subunits

Stefan Herlitze; David E. García; Ken Mackie; Bertil Hille; Todd Scheuer; William A. Catterall

CALCIUM ions entering cells through voltage-gated Ca2+ channels initiate rapid release of neurotransmitters and secretion of hormones. Ca2+ currents can be inhibited in many cell types by neurotransmitters acting through G proteins via a membrane-delimited pathway independently of soluble intracellular messengers1–4. Inhibition is typically caused by a positive shift in the voltage dependence and a slowing of channel activation and is relieved by strong depolarization resulting in facilitation of Ca2+currents1,4–6. This pathway regulates the activity of N-type and P/ Q-type Ca2+ channels1,2,7, which are localized in presynaptic terminals8,9 and participate in neurotransmitter release10–13. Synaptic transmission is inhibited by neurotransmitters through this mechanism1,4. G-protein a subunits confer specificity in receptor coupling1–4,14–17, but it is not known whether the Gα or Gβγ subunits are responsible for modulation of Ca2+channels. Here we report that Gβγ subunits can modulate Ca2+ channels. Transfection of Gβγ into cells expressing P/Q-type Ca2+ channels induces modulation like that caused by activation of G protein-coupled receptors, but Gα subunits do not. Similarly, injection or expression of Gβγ subunits in sympathetic ganglion neurons induces facilitation and occludes modulation of N-type channels by noradrenaline, but Gα subunits do not. In both cases, the Gγ subunit is ineffective by itself, but overexpression of exogenous Gβ subunits is sufficient to cause channel modulation.


Pflügers Archiv: European Journal of Physiology | 2001

Modulation of N-type Ca2+ channel current kinetics by PMA in rat sympathetic neurons.

Rafael E. García-Ferreiro; Erick O. Hernández-Ochoa; David E. García

Abstract. The protein kinase C activator phorbol 12-myristate 13-acetate (PMA) has been used extensively in studies of G protein modulation of Ca2+ channels. PMA has been shown to be a powerful tool for inducing phosphorylation and interrupting G-protein-mediated signaling pathways. Here we re-examine the effects of PMA on whole-cell N-type Ca2+-channel currents in rat sympathetic neurons. We found that, along with an increase in the current amplitude previously reported by others, PMA pretreatment leads to alterations in current activation and inactivation kinetics. These alterations in current kinetics are voltage-dependent and are not reproduced by internal dialysis with the G protein inhibitor GDPβS. Alterations in current kinetics by PMA may therefore indicate the existence of a modulated state, presumably phosphorylated, of N-type Ca2+ channels. We propose that the increase in current amplitude is due primarily to alterations in current kinetics rather than to removal of tonic inhibition.


Biochimica et Biophysica Acta | 2003

A novel class of peptide found in scorpion venom with neurodepressant effects in peripheral and central nervous system of the rat

Miguel Corona; Fredy V. Coronas; Enrique Merino; Baltazar Becerril; Rafael Gutiérrez; Santiago Rebolledo-Antúnez; David E. García; Lourival D. Possani

A novel toxin, named Cll9, was isolated from the venom of the scorpion Centruroides limpidus limpidus Karsch. It is composed of 63 amino acid residues closely packed by four disulfide bridges. It showed no apparent effect when injected to insects, crustaceans and i.p. to mice. However, when i.c.v. injected in the rat it immediately induced sleep, suggesting that it has a neurodepressant effect. We confirmed this by showing that it has a strong antiepileptic action, as assessed with the penicillin focus model. Its effectiveness in inhibiting Na(+) permeability in (cultured) rat peripheral ganglia further supports its neurodepressant actions. However, this peptide did not affect other Na(+) channels such as those from cerebellum granular cells in culture or the rSkM1 Na(+) channels expressed in HEK293. The cDNA and genomic regions encoding this peptide were cloned and sequenced. This peptide is synthesized as a precursor of 84 amino acid residues and processed by removing 19 amino acids (signal peptide) from the amino terminal region and a couple of lysine residues from the carboxyl end. The presence of an intron of 777 bases interrupting the region encoding the signal peptide was also revealed. A comparison of its primary sequence, with more than 100 scorpion toxins known, showed that together with toxin CsE9 they constitute a new subfamily of peptides considered to be one of the most divergent groups of scorpion toxin-like peptides discovered.


Marine Drugs | 2013

A Conus regularis Conotoxin with a Novel Eight-Cysteine Framework Inhibits CaV2.2 Channels and Displays an Anti-Nociceptive Activity

Johanna Bernáldez; Sergio A. Román-González; Oscar Martínez; Samanta Jiménez; Oscar Vivas; Isabel Arenas; Gerardo Corzo; Roberto Arreguín; David E. García; Lourival D. Possani; Alexei Licea

A novel peptide, RsXXIVA, was isolated from the venom duct of Conus regularis, a worm-hunting species collected in the Sea of Cortez, México. Its primary structure was determined by mass spectrometry and confirmed by automated Edman degradation. This conotoxin contains 40 amino acids and exhibits a novel arrangement of eight cysteine residues (C-C-C-C-CC-CC). Surprisingly, two loops of the novel peptide are highly identical to the amino acids sequence of ω-MVIIA. The total length and disulfide pairing of both peptides are quite different, although the two most important residues for the described function of ω-MVIIA (Lys2 and Tyr13) are also present in the peptide reported here. Electrophysiological analysis using superior cervical ganglion (SCG) neurons indicates that RsXXIVA inhibits CaV2.2 channel current in a dose-dependent manner with an EC50 of 2.8 μM, whose effect is partially reversed after washing. Furthermore, RsXXIVA was tested in hot-plate assays to measure the potential anti-nociceptive effect to an acute thermal stimulus, showing an analgesic effect in acute thermal pain at 30 and 45 min post-injection. Also, the toxin shows an anti-nociceptive effect in a formalin chronic pain test. However, the low affinity for CaV2.2 suggests that the primary target of the peptide could be different from that of ω-MVIIA.


Biochemical and Biophysical Research Communications | 2013

PIP2 hydrolysis is responsible for voltage independent inhibition of CaV2.2 channels in sympathetic neurons

Oscar Vivas; Héctor Castro; Isabel Arenas; David Elías-Viñas; David E. García

GPCRs regulate Ca(V)2.2 channels through both voltage dependent and independent inhibition pathways. The aim of the present work was to assess the phosphatidylinositol-4,5-bisphosphate (PIP2) as the molecule underlying the voltage independent inhibition of Ca(V)2.2 channels in SCG neurons. We used a double pulse protocol to study the voltage independent inhibition and changed the PIP(2) concentration by means of blocking the enzyme PLC, filling the cell with a PIP(2) analogue and preventing the PIP(2) resynthesis with wortmannin. We found that voltage independent inhibition requires the activation of PLC and can be hampered by internal dialysis of exogenous PIP(2). In addition, the recovery from voltage independent inhibition is blocked by inhibition of the enzymes involved in the resynthesis of PIP(2). These results support that the hydrolysis of PIP(2) is responsible for the voltage independent inhibition of Ca(V)2.2 channels.


Toxicon | 2014

A purified Palythoa venom fraction delays sodium current inactivation in sympathetic neurons.

Fernando Lazcano-Pérez; Oscar Vivas; Sergio A. Román-González; Eduardo Rodríguez-Bustamante; Héctor Castro; Isabel Arenas; David E. García; Nuria Sánchez-Puig; Roberto Arreguín-Espinosa

Palythoa caribaeorum is a zoanthid (Phylum Cnidaria, class Anthozoa) commonly found in shallow waters of coral reefs along the Mexican Atlantic coast. Little is known on the pharmacological and biochemical properties of the venom components of this animal group. Toxin peptides from other cnidarian venoms, like sea anemones, target sodium and potassium voltage-gated channels. In this study, we tested the activity of a low molecular weight fraction from the venom of P. caribaeorum on voltage-gated sodium channels of the superior cervical ganglion (SCG) neurons of the rat. Our results showed that this fraction delays tetrodotoxin (TTX)-sensitive sodium channel inactivation indicated by a reversible 2-fold increase of the current at the decay. A peptide responsible for this activity was isolated and characterized. Its sequence showed that it does not resemble any previously reported toxin. Together, these results evidence the presence of neurotoxins in P. caribaeorum that act on sodium channels.


Archives of Biochemistry and Biophysics | 2009

Gating charges per channel of CaV2.2 channels are modified by G protein activation in rat sympathetic neurons

Santiago Rebolledo-Antúnez; José Manuel Pérez y Farías; Isabel Arenas; David E. García

It has been suggested that voltage-dependent G protein modulation of Ca(V)2.2 channels is carried out at closed states of the channel. Our purpose was to estimate the number of gating charges of Ca(V)2.2 channel in control and G protein-modulated conditions. By using a Cole-Moore protocol we observed a significant delay in Ca(V)2.2 channel activation according to a transit of the channel through a series of closed states before channel opening. If G protein voltage-dependent modulation were carried out at these closed states, then we would have expected a greater Cole-Moore lag in the presence of a neurotransmitter. This prediction was confirmed for noradrenaline, while no change was observed in the presence of angiotensin II, a voltage-insensitive G protein modulator. We used the limiting slope method for calculation of the gating charge per channel. Effective charge z was 6.32+/-0.65 for Ca(V)2.2 channels in unregulated conditions, while GTPgammaS reduced elementary charge by approximately 4 e(0). Accordingly, increased concentration of noradrenaline induced a gradual decrease on z, indicating that this decrement was due to a G protein voltage-sensitive modulation. This paper shows for the first time a significant and reversible decrease in charge transfer of Ca(V)2.2 channels under G protein modulation, which might depend on the activated G protein inhibitory pathway.


Neuroscience Letters | 2010

Extremely low-frequency electromagnetic fields differentially regulate estrogen receptor-α and -β expression in the rat olfactory bulb

Gloria Reyes-Guerrero; Carolina Guzmán; David E. García; Ignacio Camacho-Arroyo; Mario Vázquez-García

Recently, the effects of extremely low-frequency electromagnetic fields (ELF EMF) on biological systems have been extensively investigated. In this report, the influence of ELF EMF on olfactory bulb (OB) estrogen receptor-alpha (ER alpha) mRNA and -beta (ER beta) mRNA expression was studied by RT-PCR in adult female and male rats. Results reveal for the first time that ELF EMF exerted a biphasic effect on female OB ER beta mRNA gene expression, which increased during diestrous and decreased during estrous. We did not observe any influence of ELF EMF on female OB ER alpha mRNA expression. Our data demonstrate a fluctuating pattern of ER-alpha and -beta mRNA expression in the female OB throughout the phases of the estrous cycle in non-ELF EMF-exposed animals. Thus the highest ER alpha expression was observed in diestrous and the lowest in proestrous. The pattern of ER beta mRNA was less variable, the lowest expression was observed in diestrous. ER-alpha mRNA and -beta mRNA expression level in the male OB did not exhibit any variation either in ELF EMF-exposed or non-ELF EMF-exposed animals. In summary, ELF EMF modulate ER beta gene expression in the OB of female adult rats but not in males.

Collaboration


Dive into the David E. García's collaboration.

Top Co-Authors

Avatar

Isabel Arenas

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Oscar Vivas

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Ken Mackie

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Bertil Hille

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Todd Scheuer

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Héctor Castro

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Jorge Bravo-Martínez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Julieta Garduño

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge