Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. H. Theobald is active.

Publication


Featured researches published by David E. H. Theobald.


Science | 2007

Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement

Jeffrey W. Dalley; Tim D. Fryer; Laurent Brichard; Emma Robinson; David E. H. Theobald; Kristjan Lääne; Yolanda Peña; Emily R. Murphy; Yasmene B. Shah; Katrin C. Probst; Irina Abakumova; Franklin I. Aigbirhio; Hugh K. Richards; Young T. Hong; Jean-Claude Baron; Barry J. Everitt; Trevor W. Robbins

Stimulant addiction is often linked to excessive risk taking, sensation seeking, and impulsivity, but in ways that are poorly understood. We report here that a form of impulsivity in rats predicts high rates of intravenous cocaine self-administration and is associated with changes in dopamine (DA) function before drug exposure. Using positron emission tomography, we demonstrated that D2/3 receptor availability is significantly reduced in the nucleus accumbens of impulsive rats that were never exposed to cocaine and that such effects are independent of DA release. These data demonstrate that trait impulsivity predicts cocaine reinforcement and that D2 receptor dysfunction in abstinent cocaine addicts may, in part, be determined by premorbid influences.


The Journal of Neuroscience | 2004

Contrasting Roles of Basolateral Amygdala and Orbitofrontal Cortex in Impulsive Choice

Catharine A. Winstanley; David E. H. Theobald; Rudolf N. Cardinal; Trevor W. Robbins

The orbitofrontal cortex (OFC) and basolateral nucleus of the amygdala (BLA) share many reciprocal connections, and a functional interaction between these regions is important in controlling goal-directed behavior. However, their relative roles have proved hard to dissociate. Although injury to these brain regions can cause similar effects, it has been suggested that the resulting impairments arise through damage to different, yet converging, cognitive processes. Patients with OFC or amygdala lesions exhibit maladaptive decision making and aberrant social behavior often described as impulsive. Impulsive choice may be measured in both humans and rodents by evaluating intolerance to delay of reinforcement. Rats with excitotoxic lesions of the BLA and OFC were tested on such a delay-discounting procedure. Although lesions of the BLA increased choice of the small immediate reward, indicating greater impulsivity, OFC lesions had the opposite effect, increasing preference for the larger but delayed reward. The fact that the delay did not devalue the large reward to such an extent in OFC-lesioned animals supports the suggestion that the OFC is involved in updating the incentive value of outcomes in response to devaluation. In contrast, the BLA-lesioned animals markedly decreased their preference for the large reward when it was delayed, potentially because of an inability to maintain a representation of the reward in its absence. This is the first time that lesions to these two structures have produced opposite behavioral effects, indicating their distinct contributions to cognition.


Neuropsychopharmacology | 2004

Fractionating impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behavior.

Catharine A. Winstanley; Jeffrey W. Dalley; David E. H. Theobald; Trevor W. Robbins

Reducing levels of 5-HT in the central nervous system has been associated with increases in impulsive behavior. However, the impulsivity construct describes a wide range of behaviors, including the inability to withhold a response, intolerance to delay of reward and perseveration of a nonrewarded response. Although these behaviors are generally studied using instrumental paradigms, impulsivity may also be reflected in simple Pavlovian tasks such as autoshaping and conditioned activity. This experiment aimed to characterize further the effects of central 5-HT depletion and to investigate whether different behavioral measures of impulsivity are inter-related, thus validating the construct. Rats received intracerebroventricular (ICV) infusions of vehicle (n=10) or the serotonergic neurotoxin 5,7-dihydroxytryptamine (n=12) which depleted forebrain 5-HT levels by about 90%. Lesioned animals showed significant increases in the speed and number of responses made in autoshaping, increased premature responding on a simple visual attentional task, enhanced expression of locomotor activity conditioned to food presentation, yet no change in impulsive choice was observed, as measured by a delay-discounting paradigm. Significant positive correlations were found between responses made in autoshaping and the level of conditioned activity, indicating a possible common basis for these behaviors, yet no correlations were found between other behavioral measures. These data strengthen and extend the hypothesis that 5-HT depletion increases certain types of impulsive responding. However, not all measures of impulsivity appear to be uniformly affected by 5-HT depletion, or correlate with each other, supporting the suggestion that impulsivity is not a unitary construct.


Neuropsychopharmacology | 2005

Interactions between Serotonin and Dopamine in the Control of Impulsive Choice in Rats: Therapeutic Implications for Impulse Control Disorders.

Catharine A. Winstanley; David E. H. Theobald; Jeffrey W. Dalley; Trevor W. Robbins

Forebrain serotonergic lesions attenuate the ability of d-amphetamine to decrease impulsivity in a delay-discounting paradigm, potentially through interactions between the serotonin (5-HT) and dopamine (DA) systems. Nucleus accumbens (NAC) lesions increase impulsivity, but the extent to which accumbal DA is involved in regulating impulsive choice is unknown. In the current study, the effects of intra-accumbal infusions of 6-hydroxydopamine (6-OHDA) on impulsive choice were evaluated, in combination with d-amphetamine and serotonergic drugs, in order to investigate the importance of 5-HT : DA interactions in the control of impulsive behavior. Following training on a delay-discounting task, animals received intra-NAC 6-OHDA or sham surgery. Postoperatively, subjects received systemic injections of d-amphetamine (0, 0.3, 1.0, 1.5 mg/kg) and the 5-HT1A receptor agonist 8-OH-DPAT (0, 0.1, 0.3, 1.0 mg/kg). Intra-NAC 6-OHDA, which reduced local DA and NA levels by 70–75%, had no effect on delay-discounting, but transiently potentiated the d-amphetamine-induced decrease in impulsive choice. 8-OH-DPAT (1.0 mg/kg) increased impulsivity in sham-operated controls, an effect which was blocked by the 5-HT1A receptor antagonist WAY 100635. However, 8-OH-DPAT had no effect on impulsivity in 6-OHDA NAC lesioned rats. 8-OH-DPAT (0.3 mg/kg), which did not itself alter task performance, blocked the effect of d-amphetamine in sham-operated controls, while WAY 100635 augmented the effect of amphetamine in all subjects. In an additional experiment, intracerebroventricular administration of the selective serotonergic toxin 5,7-dihydroxytryptamine, which decreased forebrain 5-HT levels by 85–90%, did not block 8-OH-DPATs ability to increase impulsive choice. These data suggest a significant role for 5-HT : DA interactions within the NAC in the control of impulsivity, and in the mechanism by which amphetamine decreases impulsive choice.


Neuropsychopharmacology | 2002

Deficits in Impulse Control Associated with Tonically-elevated Serotonergic Function in Rat Prefrontal Cortex ☆

Jeffrey W. Dalley; David E. H. Theobald; Dawn M. Eagle; Filippo Passetti; Trevor W. Robbins

Converging lines of evidence suggest that dysfunction of brain serotonergic systems may underlie impulsive behavior. However, the nature of this deficit remains poorly understood because indirect indices of serotonin (5-HT) function are often used in clinical and experimental studies. In this investigation we measured 5-HT release directly in the prefrontal cortex of rats using in vivo microdialysis during performance of a visual attentional task. A number of performance measures were taken, including the number of premature responses made during the inter-trial interval before the onset of the visual discriminanda. This form of behavioral disinhibition was defined as impulsive, after Soubrié (1986). Lengthening the inter-trial interval increased the sensitivity of the task for detecting impulsive tendencies. Cortical levels of 5-HT and its metabolite 5-HIAA remained at pre-task levels over 1 h of task performance. By contrast, levels of dopamine (DA) and its metabolite DOPAC increased during this period. Regression analysis established a positive relationship between premature (impulsive) responses and 5-HT efflux, both under basal (r = 0.49) and task-related (r = 0.42) conditions (n = 31). No such relationship was found for prefrontal levels of DA. However, post-mortem analysis revealed that animals that were more impulsive had a higher turnover of DA in anterior cingulate, prelimbic and infralimbic cortices but no detectable abnormalities in 5-HT function. These data indicate that elevated 5-HT release in the prefrontal cortex may underlie deficits in impulse control on this task. Additionally, DA dysfunction in this region may be another, possibly independent, trait marker of impulsivity.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens

Jeffrey W. Dalley; Kristjan Lääne; David E. H. Theobald; Hannah C. Armstrong; Philip R. Corlett; Yogita Chudasama; Trevor W. Robbins

Recent research has implicated the nucleus accumbens (NAc) in consolidating recently acquired goal-directed appetitive memories, including spatial learning and other instrumental processes. However, an important but unresolved issue is whether this forebrain structure also contributes to the consolidation of fundamental forms of appetitive learning acquired by Pavlovian associative processes. In addition, although dopaminergic and glutamatergic influences in the NAc have been implicated in instrumental learning, it is unclear whether similar mechanisms operate during Pavlovian conditioning. To evaluate these issues, the effects of posttraining intra-NAc infusions of D1, D2, and NMDA receptor antagonists, as well as d-amphetamine, were determined on Pavlovian autoshaping in rats, which assesses learning by discriminated approach behavior to a visual conditioned stimulus predictive of food reward. Intracerebral infusions were given either immediately after each conditioning session to disrupt early memory consolidation or after a delay of 24 h. Findings indicate that immediate, but not delayed, infusions of both D1 (SCH 23390) and NMDA (AP-5) receptor antagonists significantly impair learning on this task. By contrast, amphetamine and the D2 receptor antagonist sulpiride were without significant effect. These findings provide the most direct demonstration to date that D1 and NMDA receptors in the NAc contribute to, and are necessary for, the early consolidation of appetitive Pavlovian learning.


Biological Psychiatry | 2008

Original ArticleSelective Loss of Brain-Derived Neurotrophic Factor in the Dentate Gyrus Attenuates Antidepressant Efficacy

Megumi Adachi; Michel Barrot; Anita E. Autry; David E. H. Theobald; Lisa M. Monteggia

BACKGROUND Brain-derived neurotrophic factor (BDNF) plays an important role in neural plasticity in the adult nervous system and has been suggested as a target gene for antidepressant treatment. The neurotrophic hypothesis of depression suggests that loss of BDNF from the hippocampus contributes to an increased vulnerability for depression, whereas upregulation of BDNF in the hippocampus is suggested to mediate antidepressant efficacy. METHODS We have used a viral-mediated gene transfer approach to assess the role of BDNF in subregions of the hippocampus in a broad array of behavioral paradigms, including depression-like behavior and antidepressant responses. We have combined the adeno-associated virus (AAV) with the Cre/loxP site-specific recombination system to induce the knockout of BDNF selectively in either the CA1 or dentate gyrus (DG) subregions of the hippocampus. RESULTS We show that the loss of BDNF in either the CA1 or the DG of the hippocampus does not alter locomotor activity, anxiety-like behavior, fear conditioning, or depression-related behaviors. However, the selective loss of BDNF in the DG but not the CA1 region attenuates the actions of desipramine and citalopram in the forced swim test. CONCLUSIONS These data suggest that the loss of hippocampal BDNF per se is not sufficient to mediate depression-like behavior. However, these results support the view that BDNF in the DG might be essential in mediating the therapeutic effect of antidepressants.


European Journal of Neuroscience | 2007

Lesions of the dorsal noradrenergic bundle impair attentional set‐shifting in the rat

David S. Tait; Verity J. Brown; Anja Farovik; David E. H. Theobald; Jeffrey W. Dalley; Trevor W. Robbins

Rats with medial prefrontal cortex (mPFC) lesions are impaired in attentional set‐shifting, when it is required to shift to a previously irrelevant perceptual dimension. The main source of noradrenergic input to the mPFC is from the locus coeruleus via the dorsal noradrenergic ascending bundle (DNAB). This study examined the effects of selective cortical noradrenaline depletion following 6‐hydroxydopamine‐induced lesions of the DNAB on attentional set‐shifting and other aspects of discrimination learning and performance. Rats learned to dig in baited bowls, and then acquired discriminations based on one of two aspects of a bowl − odour or digging medium. The task tested acquisition of novel discriminations (both intra‐ and extra‐dimensional) and reversal learning when contingencies were reversed with the same stimuli. At the conclusion of testing, the DNAB‐lesioned rats were shown to have a selective depletion of noradrenaline of ∼ 70% within the mPFC (cingulate and prelimbic cortex subregions), with no other significant changes in dopamine or 5‐hydroxytryptamine. Rats required more trials to learn new discriminations when attentional shifting was required [extra‐dimensional (ED)‐shift]. Rats with dorsal noradrenergic ascending bundle (DNAB) lesions were impaired in novel acquisitions when an ED‐shift was required, but were unimpaired in reversal learning and other aspects of discrimination learning, relative to controls. These data are consistent with other evidence implicating noradrenaline (NA) in attentional set‐shifting, and contrast with effects of manipulations of 5‐hydroxytryptamine (5‐HT) and acetylcholine within the medial prefrontal cortex (mPFC). The findings are also relevant to recent theorizing about the functions of the coeruleo‐cortical noradrenergic system.


Human Molecular Genetics | 2009

Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour

Christine M. Doe; Dinko Relkovic; Alastair S. Garfield; Jeffrey W. Dalley; David E. H. Theobald; Trevor Humby; Lawrence Stephen Wilkinson; Anthony Roger Isles

The Prader-Willi syndrome (PWS) genetic interval contains several brain-expressed small nucleolar (sno)RNA species that are subject to genomic imprinting. In vitro studies have shown that one of these snoRNA molecules, h/mbii-52, negatively regulates editing and alternative splicing of the serotonin 2C receptor (5htr2c) pre-RNA. However, the functional consequences of loss of h/mbii-52 and subsequent increased post-transcriptional modification of 5htr2c are unknown. 5HT2CRs are important in controlling aspects of cognition and the cessation of feeding, and disruption of their function may underlie some of the psychiatric and feeding abnormalities seen in PWS. In a mouse model for PWS lacking expression of mbii-52 (PWS-IC+/-), we show an increase in editing, but not alternative splicing, of the 5htr2c pre-RNA. This change in post-transcriptional modification is associated with alterations in a number of 5HT2CR-related behaviours, including impulsive responding, locomotor activity and reactivity to palatable foodstuffs. In a non-5HT2CR-related behaviour, marble burying, loss of mbii-52 was without effect. The specificity of the behavioural effects to changes in 5HT2CR function was further confirmed using drug challenges. These data illustrate, for the first time, the physiological consequences of altered RNA editing of 5htr2c linked to mbii-52 loss that may underlie specific aspects of the complex PWS phenotype and point to an important functional role for this imprinted snoRNA.


Behavioural Brain Research | 2010

Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats.

Anna Castañé; David E. H. Theobald; Trevor W. Robbins

Impairments in reversal learning have been attributed to orbitofrontal cortex (OFC) dysfunction in many species. However, the role of subcortical areas interconnected with the OFC such as the striatum remains poorly understood. This study directly evaluated the contribution of core and shell sub-regions of the nucleus accumbens (NAc), dorsomedial (DMS) and dorsolateral (DLS) striatum to reversal learning of an instrumental two-lever spatial discrimination task in rats. Selective NAc core, DMS and DLS lesions were achieved with microinjections of quinolinic acid and NAc shell lesions with ibotenic acid. Damage to NAc core or shell did not affect retention of a previously acquired instrumental spatial discrimination. In contrast, DLS and DMS lesions produced changes in aspects of discrimination performance such as the latency to collect earned food pellets. Neither NAc core or shell lesions nor DLS lesions affected the main indices of reversal performance. Conversely, DMS lesion rats showed a significant impairment in reversal learning. DMS damage increased the number of errors to reach criteria that were perseverative in nature. The deficit in reversal learning in DMS lesion rats was not associated with an impairment to extinguish instrumental responding. There were no effects on spontaneous locomotor activity. Our data are in agreement with recent work showing that lesions of the medial striatum in marmoset monkeys produce perseverative impairments during a serial visual discrimination reversal task and support the hypothesis that dorsomedial striatal dysfunction contributes to pathological perseveration, which is a common feature of many psychiatric disorders.

Collaboration


Dive into the David E. H. Theobald's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniele Caprioli

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge