Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Haines is active.

Publication


Featured researches published by David E. Haines.


Circulation | 2003

ACC/AHA/ESC Guidelines for the Management of Patients With Supraventricular Arrhythmias—Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Supraventricular Arrhythmias)

Carina Blomström-Lundqvist; Melvin M. Scheinman; Etienne Aliot; Joseph S. Alpert; Hugh Calkins; A. John Camm; W. Barton Campbell; David E. Haines; Karl H. Kuck; Bruce B. Lerman; D. Douglas Miller; Charlie Willard Shaeffer; William G. Stevenson; Gordon F. Tomaselli; Elliott M. Antman; Sidney C. Smith; David P. Faxon; Valentin Fuster; Raymond J. Gibbons; Gabriel Gregoratos; Loren F. Hiratzka; Sharon A. Hunt; Alice K. Jacobs; Richard O. Russell; Silvia G. Priori; Jean Jacques Blanc; Andzrej Budaj; Enrique Fernandez Burgos; Martin R. Cowie; Jaap W. Deckers

ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias--executive summary : a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Supraventricular Arrhythmias).


Pacing and Clinical Electrophysiology | 1989

Tissue Heating During Radiofrequency Catheter Ablation: A Thermodynamic Model and Observations in Isolated Perfused and Superfused Canine Right Ventricular Free Wall

David E. Haines; Denny D. Watson

Thecharacteristics of radiofrequency catheter ablation induced injury in the heart are not well characterized. Since the mechanism of injury by radiofrequency energy is thermal, this study was performed to determine the temperature gradient in myocardial tissue during radiofrequency (RF) catheter ablation, and to validate a thermodynamic model derived to describe these observations. Lesions were created by RF heating in an experimental model of isolated perfused and superfused canine right ventricular (RV) free wall. RF power output was adjusted to maintain electrode tip temperature at 80°C for 120 seconds in 153 serial lesions and radial temperature gradients were measured. With increasing distance from the electrode, the temperature of the myocardium decreased in a hyperbolic form that was closely predicted by a derived thermodynamic model (P = 0.0001, r = 0.98). This gradient and resultant lesion sizes were unafected by the rate of coronary perfusion. The utility of tip temperature monitoring as a predictor of lesion size was tested in 104 serial lesions with tip temperatures that were varied between 50 and 85°C. The tip temperature correlated closely with lesion depth (P = 0.0001, r = 0.92) and width (P = 0.0001, r = 0.88), and was a better predictor of lesion size than measurements of power, current or energy. The temperature at the margin between viable and nonviable tissue was estimated to be 47.9°C. These data demonstrate that during radiofrequency catheter ablation, the radial temperature gradient is predictably hyperbolic and appears to be independent of intramyocardial perfusion if constant electrode temperature is maintained. The use of tip temperature monitoring can accurately predict the ultimate size of radiofrequency‐induced lesions.


Journal of the American College of Cardiology | 2011

ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography

Pamela S. Douglas; Mario J. Garcia; David E. Haines; Wyman W. Lai; Warren J. Manning; Michael H. Picard; Donna Polk; Michael Ragosta; R. Parker Ward; Rory B. Weiner; Steven R. Bailey; Peter Alagona; Jeffrey L. Anderson; Jeanne M. DeCara; Rowena J Dolor; Reza Fazel; John A. Gillespie; Paul A. Heidenreich; Luci K. Leykum; Joseph E. Marine; Gregory Mishkel; Patricia A. Pellikka; Gilbert Raff; Krishnaswami Vijayaraghavan; Neil J. Weissman; Katherine C. Wu; Michael J. Wolk; Robert C. Hendel; Christopher M. Kramer; James K. Min

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1128 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1128


Circulation | 1990

Observations on electrode-tissue interface temperature and effect on electrical impedance during radiofrequency ablation of ventricular myocardium.

David E. Haines; Anthony F. Verow

The purpose of this study was to correlate changes in electrical impedance with the electrode-tissue interface temperature and to characterize the associated events occurring at the catheter tip electrode. In a canine model, lesions were created in vitro (n = 49) and in vivo (n = 31) and radiofrequency power settings were varied. Electrode-tissue interface temperature, delivered current, and voltage were recorded, and impedance was calculated. A sudden rise in electrical impedance was seen in only two of 17 ablations in vitro and in one of 16 ablations in vivo with a peak electrode-tissue interface temperature of less than 100 degrees C compared with 29 of 32 ablations in vitro (p = 0.0001) and 12 of 15 ablations in vivo with a temperature of more than 100 degrees C (p = 0.0001). This phenomenon was associated with the observation of boiling and popping at the tip in in vitro preparations and tissue avulsion and thrombus formation on the catheter tip in in vivo studies. The lesion size was directly proportional to the peak temperature for all ablations but not to the peak power, current, or voltage during radiofrequency catheter ablation in the heart. Maintaining electrode-tissue interface temperature at less than 100 degrees C during radiofrequency catheter ablation in the heart may avoid the complications associated with the sudden rise in electrical impedance.


Journal of The American Society of Echocardiography | 2011

ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate use criteria for echocardiography

Pamela S. Douglas; Mario J. Garcia; David E. Haines; Wyman W. Lai; Warren J. Manning; Michael H. Picard; Donna Polk; Michael Ragosta; R. Parker Ward; Rory B. Weiner

The American College of Cardiology Foundation (ACCF), in partnership with the American Society of Echocardiography (ASE) and along with key specialty and subspecialty societies, conducted a review of common clinical scenarios where echocardiography is frequently considered. This document combines and updates the original transthoracic and transesophageal echocardiography appropriateness criteria published in 2007 (1) and the original stress echocardiography appropriateness criteria published in 2008 (2). This revision reflects new clinical data, reflects changes in test utilization patterns,and clarifies echocardiography use where omissions or lack of clarity existed in the original criteria.The indications (clinical scenarios)were derived from common applications or anticipated uses, as well as from current clinical practice guidelines and results of studies examining the implementation of the original appropriate use criteria (AUC).The 202 indications in this document were developed by a diverse writing group and scored by a separate independent technical panel on a scale of 1 to 9,to designate appropriate use(median 7 to 9), uncertain use(median 4 to 6), and inappropriate use (median 1 to 3). Ninety-seven indications were rated as appropriate, 34 were rated as uncertain, and 71 were rated as inappropriate. In general,the use of echocardiography for initial diagnosis when there is a change in clinical status or when the results of the echocardiogram are anticipated to change patient management were rated appropriate. Routine testing when there was no change in clinical status or when results of testing were unlikely to modify management were more likely to be inappropriate than appropriate/uncertain.The AUC for echocardiography have the potential to impact physician decision making,healthcare delivery, and reimbursement policy. Furthermore,recognition of uncertain clinical scenarios facilitates identification of areas that would benefit from future research.


Circulation | 2000

Electrical, Morphological, and Ultrastructural Remodeling and Reverse Remodeling in a Canine Model of Chronic Atrial Fibrillation

Thomas H. Everett; Hui Li; J. Michael Mangrum; Ian D. McRury; Mark A. Mitchell; Jan A. Redick; David E. Haines

BackgroundIn patients with recurrent persistent atrial fibrillation (AF), vulnerability to AF persists indefinitely despite presumed completion of reverse electrical remodeling within days of return to normal sinus rhythm. Atrial electrical and anatomic remodeling and reverse remodeling were studied in a canine model of chronic AF. Methods and ResultsChronic AF was induced in 8 dogs by creating moderate mitral regurgitation and rapidly pacing the right atrium at 640 bpm for >8 weeks. Measurements performed at baseline, after establishment of chronic AF, and then at 4 hours and again at 7 to 14 days after cardioversion to sinus rhythm included atrial effective refractory periods, AF cycle lengths, left atrial dimensions, premature atrial contraction (PAC) frequency, and atrial vulnerability to atrial extrastimuli. After establishing chronic AF, atrial effective refractory period shortening, increases in spontaneous PAC frequency, increases in left atrial size with loss of contractility, and multiple ultrastructural abnormalities were demonstrated. Complete reverse electrical remodeling and decreases in PACs were observed after 7 to 14 days of sinus rhythm, but there was no resolution of anatomic and ultrastructural abnormalities. Occurrence of spontaneous AF paralleled PAC frequency, but vulnerability to AF induction persisted (75% immediately after conversion versus 63% at 4 hours and 50% at 7 to 14 days) despite reverse electrical remodeling. ConclusionsAfter conversion from chronic AF to sinus rhythm in this canine model, electrical remodeling occurs rapidly. However, gross and ultrastructural anatomic changes persist, as does vulnerability to induced AF. Vulnerability to AF initiation 7 to 14 days after cardioversion is more dependent on persisting structural abnormalities than on electrophysiological abnormalities.


Pacing and Clinical Electrophysiology | 1993

The biophysics of radiofrequency catheter ablation in the heart: the importance of temperature monitoring.

David E. Haines

Radiofrequency (RF) catheter ablation is a technique whereby high frequency alternating electrical current with frequencies of 350 kHz to 1 MHz is delivered through eiectrode catheters to myocardial tissue creating a thermal lesion. The mechanism by which RF current heats tissue is resistive (or ohmic) heating of a narrow rim (< 1 mm) of tissue that is in direct contact with the electrode Deeper tissue planes are then heated by conduction from the small region of volume heating. Heat is dissipated from the region by further heat conduction into normothermic tissue, and by heat convection via the circulating blood pool and larger coronary vessels. The lesion size is proportional to the temperature at the electrode‐tissue interface (which is also a function of power level if electrical factors remain constant), and to the size of the electrode. At temperatures above 100°C, boiling occurs at the electrode‐tissue contact point resulting in a rapid rise in electrical impedance. Therefore, a theoretical maximum lesion size exists for any given electrode geometry. Other factors that are important for RF lesion formation incude electrode‐tissue contact pressure and duration of RF delivery. Temperature rises monoexponentially, and duration of energy delivery should be at least 35 to 45 seconds to approach steady state.


Heart Rhythm | 2014

EHRA/HRS/APHRS expert consensus on ventricular arrhythmias.

Hannah Peachey; Christian Torp Pedersen; G. Neal Kay; Jonathan M. Kalman; Martin Borggrefe; Paolo Della-Bella; Timm Dickfeld; Paul Dorian; Heikki V. Huikuri; Youg Hoon Kim; Bradley P. Knight; Francis E. Marchlinski; David L. Ross; Frederic Sacher; John L. Sapp; Kalyanam Shivkumar; Kyoko Soejima; Hiroshi Tada; Mark E. Alexander; John K. Triedman; Takumi Yamada; Paulus Kirchhof; Gregory Y.H. Lip; Karl-Heinz Kuck; Lluis Mont; David E. Haines; Jukia Indik; John P. DiMarco; Derek V. Exner; Yoshito Iesaka

Christian Torp Pedersen (EHRA Chairperson, Denmark), G. Neal Kay (HRS Chairperson, USA), Jonathan Kalman (APHRS Chairperson, Australia), Martin Borggrefe (Germany), Paolo Della-Bella (Italy), Timm Dickfeld (USA), Paul Dorian (Canada), Heikki Huikuri (Finland), Youg-Hoon Kim (Korea), Bradley Knight (USA), Francis Marchlinski (USA), David Ross (Australia), Frédéric Sacher (France), John Sapp (Canada), Kalyanam Shivkumar (USA), Kyoko Soejima (Japan), Hiroshi Tada (Japan), Mark E. Alexander (USA), John K. Triedman (USA), Takumi Yamada (USA), and Paulus Kirchhof (Germany)


Heart Rhythm | 2017

2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation

Hugh Calkins; Gerhard Hindricks; Riccardo Cappato; Young Hoon Kim; Eduardo B. Saad; Luis Aguinaga; Joseph G. Akar; Vinay Badhwar; Josep Brugada; John Camm; Peng Sheng Chen; Shih Ann Chen; Mina K. Chung; Jens Cosedis Nielsen; Anne B. Curtis; D. Wyn Davies; John D. Day; Andre d'Avila; N. M. S. de Groot; Luigi Di Biase; Mattias Duytschaever; James R. Edgerton; Kenneth A. Ellenbogen; Patrick T. Ellinor; Sabine Ernst; Guilherme Fenelon; Edward P. Gerstenfeld; David E. Haines; Michel Haïssaguerre; Robert H. Helm

During the past three decades, catheter and surgical ablation of atrial fibrillation (AF) have evolved from investigational procedures to their current role as effective treatment options for patients with AF. Surgical ablation of AF, using either standard, minimally invasive, or hybrid techniques, is available in most major hospitals throughout the world. Catheter ablation of AF is even more widely available, and is now the most commonly performed catheter ablation procedure. In 2007, an initial Consensus Statement on Catheter and Surgical AF Ablation was developed as a joint effort of the Heart Rhythm Society (HRS), the European Heart Rhythm Association (EHRA), and the European Cardiac Arrhythmia Society (ECAS).1 The 2007 document was also developed in collaboration with the Society of Thoracic Surgeons (STS) and the American College of Cardiology (ACC). This Consensus Statement on Catheter and Surgical AF Ablation was rewritten in 2012 to reflect the many advances in AF ablation that had occurred in the interim.2 The rate of advancement in the tools, techniques, and outcomes of AF ablation continue to increase as enormous research efforts are focused on the mechanisms, outcomes, and treatment of AF. For this reason, the HRS initiated an effort to rewrite and update this Consensus Statement. Reflecting both the worldwide importance of AF, as well as the worldwide performance of AF ablation, this document is the result of a joint partnership between the HRS, EHRA, ECAS, the Asia Pacific Heart Rhythm Society (APHRS), and the Latin American Society of Cardiac Stimulation and Electrophysiology (Sociedad Latinoamericana de Estimulacion Cardiaca y Electrofisiologia [SOLAECE]). The purpose of this 2017 Consensus Statement is to provide a state-of-the-art review of the field of catheter and surgical ablation of AF and to report the findings of a writing group, convened by these five international societies. The writing group is charged with defining the indications, techniques, and outcomes of AF ablation procedures. Included within this document are recommendations pertinent to the design of clinical trials in the field of AF ablation and the reporting of outcomes, including definitions relevant to this topic. The writing group is composed of 60 experts representing 11 organizations: HRS, EHRA, ECAS, APHRS, SOLAECE, STS, ACC, American Heart Association (AHA), Canadian Heart Rhythm Society (CHRS), Japanese Heart Rhythm Society (JHRS), and Brazilian Society of Cardiac Arrhythmias (Sociedade Brasileira de Arritmias Cardiacas [SOBRAC]). All the members of the writing group, as well as peer reviewers of the document, have provided disclosure statements for all relationships that might be perceived as real or potential conflicts of interest. All author and peer reviewer disclosure information is provided in Appendix A and Appendix B. In writing a consensus document, it is recognized that consensus does not mean that there was complete agreement among all the writing group members. Surveys of the entire writing group were used to identify areas of consensus concerning performance of AF ablation procedures and to develop recommendations concerning the indications for catheter and surgical AF ablation. These recommendations were systematically balloted by the 60 writing group members and were approved by a minimum of 80% of these members. The recommendations were also subject to a 1-month public comment period. Each partnering and collaborating organization then officially reviewed, commented on, edited, and endorsed the final document and recommendations. The grading system for indication of class of evidence level was adapted based on that used by the ACC and the AHA.3,4 It is important to state, however, that this document is not a guideline. The indications for catheter and surgical ablation of AF, as well as recommendations for procedure performance, are presented with a Class and Level of Evidence (LOE) to be consistent with what the reader is familiar with seeing in guideline statements. A Class I recommendation means that the benefits of the AF ablation procedure markedly exceed the risks, and that AF ablation should be performed; a Class IIa recommendation means that the benefits of an AF ablation procedure exceed the risks, and that it is reasonable to perform AF ablation; a Class IIb recommendation means that the benefit of AF ablation is greater or equal to the risks, and that AF ablation may be considered; and a Class III recommendation means that AF ablation is of no proven benefit and is not recommended. The writing group reviewed and ranked evidence supporting current recommendations with the weight of evidence ranked as Level A if the data were derived from high-quality evidence from more than one randomized clinical trial, meta-analyses of high-quality randomized clinical trials, or one or more randomized clinical trials corroborated by high-quality registry studies. The writing group ranked available evidence as Level B-R when there was moderate-quality evidence from one or more randomized clinical trials, or meta-analyses of moderate-quality randomized clinical trials. Level B-NR was used to denote moderate-quality evidence from one or more well-designed, well-executed nonrandomized studies, observational studies, or registry studies. This designation was also used to denote moderate-quality evidence from meta-analyses of such studies. Evidence was ranked as Level C-LD when the primary source of the recommendation was randomized or nonrandomized observational or registry studies with limitations of design or execution, meta-analyses of such studies, or physiological or mechanistic studies of human subjects. Level C-EO was defined as expert opinion based on the clinical experience of the writing group. Despite a large number of authors, the participation of several societies and professional organizations, and the attempts of the group to reflect the current knowledge in the field adequately, this document is not intended as a guideline. Rather, the group would like to refer to the current guidelines on AF management for the purpose of guiding overall AF management strategies.5,6 This consensus document is specifically focused on catheter and surgical ablation of AF, and summarizes the opinion of the writing group members based on an extensive literature review as well as their own experience. It is directed to all health care professionals who are involved in the care of patients with AF, particularly those who are caring for patients who are undergoing, or are being considered for, catheter or surgical ablation procedures for AF, and those involved in research in the field of AF ablation. This statement is not intended to recommend or promote catheter or surgical ablation of AF. Rather, the ultimate judgment regarding care of a particular patient must be made by the health care provider and the patient in light of all the circumstances presented by that patient. The main objective of this document is to improve patient care by providing a foundation of knowledge for those involved with catheter ablation of AF. A second major objective is to provide recommendations for designing clinical trials and reporting outcomes of clinical trials of AF ablation. It is recognized that this field continues to evolve rapidly. As this document was being prepared, further clinical trials of catheter and surgical ablation of AF were under way.


Journal of Interventional Cardiac Electrophysiology | 2012

2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design

Hugh Calkins; Karl-Heinz Kuck; Riccardo Cappato; Josep Brugada; A. John Camm; Shih Ann Chen; Harry J. Crijns; Ralph J. Damiano; D. Wyn Davies; John P. DiMarco; James R. Edgerton; Kenneth A. Ellenbogen; Michael D. Ezekowitz; David E. Haines; Michel Haïssaguerre; Gerhard Hindricks; Yoshito Iesaka; Warren M. Jackman; José Jalife; Pierre Jais; Jonathan M. Kalman; David Keane; Young Hoon Kim; Paulus Kirchhof; George J. Klein; Hans Kottkamp; Koichiro Kumagai; Bruce D. Lindsay; Moussa Mansour; Francis E. Marchlinski

This is a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation, developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology and the European Cardiac Arrhythmia Society (ECAS), and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). This is endorsed by the governing bodies of the ACC Foundation, the AHA, the ECAS, the EHRA, the STS, the APHRS, and the HRS.

Collaboration


Dive into the David E. Haines's collaboration.

Top Co-Authors

Avatar

John P. DiMarco

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar

Hugh Calkins

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Sunil Nath

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas H. Everett

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge