David E. Herbert
University of Manitoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David E. Herbert.
Journal of the American Chemical Society | 2013
David E. Herbert; Davide Lionetti; Jonathan Rittle; Theodor Agapie
A series of tetranuclear oxo/hydroxo clusters comprised of three Fe centers and a redox-inactive metal (M) of various charge is reported. Crystallographic studies show an unprecedented Fe3M(μ4-O)(μ2-OH) core that remains intact upon changing M or the oxidation state of iron. Electrochemical studies reveal that the reduction potentials (E1/2) span a window of 500 mV and depend upon the Lewis acidity of M. Using the pKa of the M-aqua complex as a measure of Lewis acidity, these compounds display a linear dependence between E1/2 and acidity, with a slope of ∼70 mV per pKa unit. The current study of [Fe3MO(OH)] and previous ones of [Mn3MOn] (n = 2,4) moieties support the generality of the above relationship between the reduction potentials of heterometallic oxido clusters and the Lewis acidity of incorporated cations, as applied to clusters of different redox-active metals.
Journal of the American Chemical Society | 2011
Rafael Huacuja; Daniel J. Graham; Claudia M. Fafard; Chun-Hsing Chen; Bruce M. Foxman; David E. Herbert; Glen E. Alliger; Christine M. Thomas; Oleg V. Ozerov
The Pd(I)-Pd(I) dimer [((F)PNP)Pd-](2) reacts with O(2) upon exposure to light to produce either the superoxide ((F)PNP)PdO(2) or the peroxide [((F)PNP)PdO-](2), which exist in equilibrium with free O(2). Both complexes contain square-planar Pd(II) centers. The unpaired electron density in ((F)PNP)PdO(2) is localized on the superoxide ligand.
Journal of the American Chemical Society | 2013
Sibo Lin; David E. Herbert; Alexandra Velian; Michael W. Day; Theodor Agapie
A para-terphenyl diphosphine was employed to support a dipalladium(I) moiety. Unlike previously reported dipalladium(I) species, the present system provides a single molecular hemisphere for binding of ligands across two metal centers, enabling the characterization and comparison of the binding of a wide variety of saturated and unsaturated organic molecules. The dipalladium(I) terphenyl diphosphine toluene-capped complex was synthesized from a dipalladium(I) hexaacetonitrile precursor in the presence of toluene. The palladium centers display interactions with the π-systems of the central ring of the terphenyl unit and that of the toluene. Exchange of toluene for anisole, 1,3-butadiene, 1,3-cyclohexadiene, thiophenes, pyrroles, or furans resulted in well-defined π-bound complexes which were studied by crystallography, nuclear magnetic resonance (NMR) spectroscopy, and density functional theory. Structural characterization shows that the interactions of the dipalladium unit with the central arene of the diphosphine does not vary significantly in this series allowing for a systematic comparison of the binding of the incoming ligands to the dipalladium moiety. Several of the complexes exhibit rare μ-η(2):η(2) or μ-η(2):η(1)(O or S) bridging motifs. Hydrogenation of the thiophene and benzothiophene adducts was demonstrated to proceed at room temperature. The relative binding strength of the neutral ligands was determined by competition experiments monitored by NMR spectroscopy. The relative equilibrium constants for ligand substitution span over 13 orders of magnitude. This represents the most comprehensive analysis to date of the relative binding of heterocycles and unsaturated ligands to bimetallic sites. Binding interactions were computationally studied with electrostatic potentials and molecular orbital analysis. Anionic ligands were also demonstrated to form π-bound complexes.
Chemistry: A European Journal | 2013
David E. Herbert; Nadia C. Lara; Theodor Agapie
The meta-terphenyl diphosphine, m-P2, 1, was utilized to support Ni centers in the oxidation states 0, I, and II. A series of complexes bearing different substituents or ligands at Ni was prepared to investigate the dependence of metal-arene interactions on oxidation state and substitution at the metal center. Complex (m-P2)Ni (2) shows strong Ni(0)-arene interactions involving the central arene ring of the terphenyl ligand both in solution and the solid state. These interactions are significantly less pronounced in Ni(0) complexes bearing L-type ligands (2-L: L=CH3CN, CO, Ph2CN2), Ni(I)X complexes (3-X: X=Cl, BF4, N3, N3B(C6F5)3), and [(m-P2)Ni(II)Cl2] (4). Complex 2 reacts with substrates, such as diphenyldiazoalkane, sulfur ylides (Ph2 S=CH2 ), organoazides (RN3: R=para-C6H4OMe, para-C6H4CF3, 1-adamantyl), and N2O with the locus of observed reactivity dependent on the nature of the substrate. These reactions led to isolation of an η(1)-diphenyldiazoalkane adduct (2-Ph2CN2), methylidene insertion into a Ni-P bond followed by rearrangement of a nickel-bound phosphorus ylide (5) to a benzylphosphine (6), Staudinger oxidation of the phosphine arms, and metal-mediated nitrene insertion into an arene C-H bond of 1, all derived from the same compound (2). Hydrogen-atom abstraction from a Ni(I)-amide (9) and the resulting nitrene transfer supports the viability of Ni-imide intermediates in the reaction of 1 with 1-azido-arenes.
Angewandte Chemie | 2009
Georgeta Masson; David E. Herbert; George R. Whittell; Jason P. Holland; Alan J. Lough; Jennifer C. Green; Ian Manners
Not blue but red-brown: A [1]ferrocenophanium ion has been synthesized and isolated as a red-brown crystalline salt, surprisingly different in color from characteristically blue-green unstrained ferrocenium ions. Compared to the neutral iron(II) counterpart, the [1]ferrocenophanium ion displays a considerably higher ring tilt and an increased propensity for ring-opening reactions.
Chemistry: A European Journal | 2012
David E. Herbert; Adam Miller; Oleg V. Ozerov
Neutral, mono-, and dicationic phosphorus(III) compounds are accessible with a supporting PNP pincer ligand (PNP = [4-Me-2-iPr(2)P-C(6)H(3))(2)N]). Reaction of (PNP)H with PCl(3) and nBu(3)N furnished (PNP)PCl(2) (1), which displays a highly temperature-dependent structure in solution. Synthesis and characterization by NMR spectroscopy and X-ray crystallography of Cl/Br-scrambled derivatives, a monocationic derivative [(PNP)PCl][HCB(11)H(11)] (4), and the dicationic derivatives [(PNP)P][OTf](2) (5), [(PNP)P][B(C(6)F(5))(4)](2) (6), [(PNP)P][B(12)Cl(12)] (7) established that 1 not only undergoes several fluxional processes in solution but also possesses a temperature-dependent ground state structure. Reaction of 1 with a Ni(0) source initially leads to a phosphine-phosphinidene complex, followed by thermal generation of P(4).
Chemistry: A European Journal | 2017
Yuriy V. Zatsikha; Dion B. Nemez; Rebecca L. Davis; Simarpreet Singh; David E. Herbert; Alex J. King; Christopher J. Ziegler; Victor N. Nemykin
Several BOPHY derivatives with and without ferrocene fragments, and with electron-withdrawing ester groups appended to the β-pyrrolic positions have been prepared and characterized by NMR, UV/Vis near-infrared (NIR), high-resolution mass spectrometry, and fluorescence spectroscopy, as well as X-ray crystallography. The redox properties of new BOPHYs were probed by electrochemical (cyclic and differential pulse voltammetry) and spectroelectrochemical methods. In an attempt to prepare BOPHY derivatives with a cyano group at the bridging position using a similar approach for BODIPY cyanation, adducts from the nucleophilic attack of the cyanide anion on the bridging position in BOPHY have been isolated and characterized by spectroscopic methods. Oxidation of such adducts, however, resulted in formation of either the starting BOPHYs, or partial extrusion of the BF2 fragment from the BOPHY core, which was confirmed by spectroscopy and X-ray crystallography. DFT and TDDFT calculations on all target materials correlate well with the experimental data, and suggest the dramatic reduction of the nitrogen atom basicity at the hydrazine bridge of the BOPHY upon introduction of the cyano group at the bridging-carbon atom.
ACS Applied Materials & Interfaces | 2015
Onkar S. Kang; Jared P. Bruce; David E. Herbert; Michael S. Freund
A fully integrated, freestanding device for photoelectrochemical fuel generation will likely require covalent attachment of catalysts to the surface of the photoelectrodes. Ferrocene has been utilized in the past as a model system for molecular catalyst integration on planar silicon; however, the surface structure of high-aspect ratio silicon microwires envisioned for a potential device presents potential challenges with respect to stability, characterization, and mass transport. Attachment of vinylferrocene to Cl-terminated surfaces of silicon microwires was performed thermally. By varying the reaction time, solutions of vinylferrocene in di-n-butyl ether were employed to control the extent of functionalization. X-ray photoelectron spectroscopy (XPS) and electrochemistry were used to estimate the density and surface coverage of the silicon microwire arrays with ferrocenyl groups, which could be controllably varied from 1.23 × 10(-11) to 4.60 × 10(-10) mol cm(-2) or 1 to 30% of a monolayer. Subsequent backfill of the remaining Si-Cl sites with methyl groups produced ferrocenyl-terminated surfaces that showed unchanged cyclic volammograms following two months in air, under ambient conditions, and repeated electrochemical cycling.
Inorganic Chemistry | 2017
Pavan Mandapati; Patrick K. Giesbrecht; Rebecca L. Davis; David E. Herbert
Proligands based on bis(8-quinolinyl)amine (L1) were prepared containing one (L2) and two (L3) benzo-fused N-heterocyclic phenanthridinyl (3,4-benzoquinolinyl) units. Taken as a series, L1-L3 provides a ligand template for exploring systematic π-extension in the context of tridentate pincer-like amido complexes of group 10 metals (1-M, 2-M, and 3-M; M = Ni, Pd, Pt). Inclusion of phenanthridinyl units was enabled by development of a cross-coupling/condensation route to 6-unsubstituted, 4-substituted phenanthridines (4-Br, 4-NO2, 4-NH2) suitable for elaboration into the target ligand frameworks. Complexes 1-M, 2-M, and 3-M are redox-active; electrochemistry and UV-vis absorption spectroscopy were used to investigate the impact of π-extension on the electronic properties of the metal complexes. Unlike what is typically observed for benzannulated ligand-metal complexes, extending the π-system in metal complexes 1-M to 2-M to 3-M led to only a moderate red shift in the relative highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap as estimated by electrochemistry and similarly subtle changes to the onset of the lowest-energy absorption observed by UV-vis spectroscopy. Time-dependent density functional theory calculations revealed that benzannulation significantly impacts the atomic contributions to the LUMO and LUMO+1 orbitals, altering the orbital contributions to the lowest-energy transition but leaving the energy of this transition essentially unchanged.
Inorganic Chemistry | 2018
Rajarshi Mondal; Issiah Lozada; Rebecca L. Davis; J. A. Gareth Williams; David E. Herbert
Benzannulated bidentate pyridine/phosphine ( P^N) ligands bearing quinoline or phenanthridine (3,4-benzoquinoline) units have been prepared, along with their halide-bridged, dimeric Cu(I) complexes of the form [( P^N)Cu]2(μ-X)2. The copper complexes are phosphorescent in the orange-red region of the spectrum in the solid-state under ambient conditions. Structural characterization in solution and the solid-state reveals a flexible conformational landscape, with both diamond-like and butterfly motifs available to the Cu2X2 cores. Comparing the photophysical properties of complexes of (quinolinyl)phosphine ligands with those of π-extended (phenanthridinyl)phosphines has revealed a counterintuitive impact of site-selective benzannulation. Contrary to conventional assumptions regarding π-extension and a bathochromic shift in the lowest energy absorption maxima, a blue shift of nearly 40 nm in the emission wavelength is observed for the complexes with larger ligand π-systems, which is assigned as phosphorescence on the basis of emission energies and lifetimes. Comparison of the ground-state and triplet excited state structures optimized from DFT and TD-DFT calculations allows attribution of this effect to a greater rigidity for the benzannulated complexes resulting in a higher energy emissive triplet state, rather than significant perturbation of orbital energies. This study reveals that ligand structure can impact photophysical properties for emissive molecules by influencing their structural rigidity, in addition to their electronic structure.