Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Knapp is active.

Publication


Featured researches published by David E. Knapp.


Proceedings of the National Academy of Sciences of the United States of America | 2010

High-resolution forest carbon stocks and emissions in the Amazon

Gregory P. Asner; George V. N. Powell; Joseph Mascaro; David E. Knapp; John K. Clark; James Jacobson; Ty Kennedy-Bowdoin; Aravindh Balaji; Guayana Paez-Acosta; Eloy Victoria; Laura Secada; Michael Valqui; R. Flint Hughes

Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.


Science | 2007

Land-Use Allocation Protects the Peruvian Amazon

Paulo J. Oliveira; Gregory P. Asner; David E. Knapp; Angélica Almeyda; Ricardo Galván-Gildemeister; Sam Keene; Rebecca F. Raybin; Richard Chase Smith

Disturbance and deforestation have profound ecological and socioeconomic effects on tropical forests, but their diffuse patterns are difficult to detect and quantify at regional scales. We expanded the Carnegie forest damage detection system to show that, between 1999 and 2005, disturbance and deforestation rates throughout the Peruvian Amazon averaged 632 square kilometers per year and 645 square kilometers per year, respectively. However, only 1 to 2% occurred within natural protected areas, indigenous territories contained only 11% of the forest disturbances and 9% of the deforestation, and recent forest concessions effectively protected against clear-cutting. Although the region shows recent increases in disturbance and deforestation rates and leakage into forests surrounding concession areas, land-use policy and remoteness are serving to protect the Peruvian Amazon.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Condition and fate of logged forests in the Brazilian Amazon

Gregory P. Asner; Eben N. Broadbent; Paulo J. Oliveira; Michael Keller; David E. Knapp; José Natalino Macedo Silva

The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest. Across 2,030,637 km2 of the Brazilian Amazon from 1999 to 2004, at least 76% of all harvest practices resulted in high levels of canopy damage sufficient to leave forests susceptible to drought and fire. We found that 16 ± 1% of selectively logged areas were deforested within 1 year of logging, with a subsequent annual deforestation rate of 5.4% for 4 years after timber harvests. Nearly all logging occurred within 25 km of main roads, and within that area, the probability of deforestation for a logged forest was up to four times greater than for unlogged forests. In combination, our results show that logging in the Brazilian Amazon is dominated by highly damaging operations, often followed rapidly by deforestation decades before forests can recover sufficiently to produce timber for a second harvest. Under the management regimes in effect at the time of our study in the Brazilian Amazon, selective logging would not be sustained.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Large-scale impacts of herbivores on the structural diversity of African savannas

Gregory P. Asner; Shaun R. Levick; Ty Kennedy-Bowdoin; David E. Knapp; Ruth Emerson; James Jacobson; Matthew S. Colgan; Roberta E. Martin

African savannas are undergoing management intensification, and decision makers are increasingly challenged to balance the needs of large herbivore populations with the maintenance of vegetation and ecosystem diversity. Ensuring the sustainability of Africas natural protected areas requires information on the efficacy of management decisions at large spatial scales, but often neither experimental treatments nor large-scale responses are available for analysis. Using a new airborne remote sensing system, we mapped the three-dimensional (3-D) structure of vegetation at a spatial resolution of 56 cm throughout 1640 ha of savanna after 6-, 22-, 35-, and 41-year exclusions of herbivores, as well as in unprotected areas, across Kruger National Park in South Africa. Areas in which herbivores were excluded over the short term (6 years) contained 38%–80% less bare ground compared with those that were exposed to mammalian herbivory. In the longer-term (> 22 years), the 3-D structure of woody vegetation differed significantly between protected and accessible landscapes, with up to 11-fold greater woody canopy cover in the areas without herbivores. Our maps revealed 2 scales of ecosystem response to herbivore consumption, one broadly mediated by geologic substrate and the other mediated by hillslope-scale variation in soil nutrient availability and moisture conditions. Our results are the first to quantitatively illustrate the extent to which herbivores can affect the 3-D structural diversity of vegetation across large savanna landscapes.


Journal of Applied Remote Sensing | 2009

Automated mapping of tropical deforestation and forest degradation: CLASlite

Gregory P. Asner; David E. Knapp; Aravindh Balaji; Guayana Paez-Acosta

Monitoring deforestation and forest degradation is central to assessing changes in carbon storage, biodiversity, and many other ecological processes in tropical regions. Satellite remote sensing is the most accurate and cost-effective way to monitor changes in forest cover and degradation over large geographic areas, but the tools and methods have been highly manual and time consuming, often requiring expert knowledge. We present a new user-friendly, fully automated system called CLASlite, which provides desktop mapping of forest cover, deforestation and forest disturbance using advanced atmospheric correction and spectral signal processing approaches with Landsat, SPOT, and many other satellite sensors. CLASlite runs on a standard Windows-based computer, and can map more than 10,000 km 2, at 30 m spatial resolution, of forest area per hour of processing time. Outputs from CLASlite include maps of the percentage of live and dead vegetation cover, bare soils and other substrates, along with quantitative measures of uncertainty in each image pixel. These maps are then interpreted in terms of forest cover, deforestation and forest disturbance using automated decision trees. CLASlite output images can be directly input to other remote sensing programs, geographic information systems (GIS), Google Earth TM serif}, or other visualization systems. Here we provide a detailed description of the CLASlite approach with example results for deforestation and forest degradation scenarios in Brazil, Peru, and other tropical forest sites worldwide.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Invasive plants transform the three-dimensional structure of rain forests

Gregory P. Asner; R. Flint Hughes; Peter M. Vitousek; David E. Knapp; Ty Kennedy-Bowdoin; Joseph W. Boardman; Roberta E. Martin; Michael L. Eastwood; Robert O. Green

Biological invasions contribute to global environmental change, but the dynamics and consequences of most invasions are difficult to assess at regional scales. We deployed an airborne remote sensing system that mapped the location and impacts of five highly invasive plant species across 221,875 ha of Hawaiian ecosystems, identifying four distinct ways that these species transform the three-dimensional (3D) structure of native rain forests. In lowland to montane forests, three invasive tree species replace native midcanopy and understory plants, whereas one understory invader excludes native species at the ground level. A fifth invasive nitrogen-fixing tree, in combination with a midcanopy alien tree, replaces native plants at all canopy levels in lowland forests. We conclude that this diverse array of alien plant species, each representing a different growth form or functional type, is changing the fundamental 3D structure of native Hawaiian rain forests. Our work also demonstrates how an airborne mapping strategy can identify and track the spread of certain invasive plant species, determine ecological consequences of their proliferation, and provide detailed geographic information to conservation and management efforts.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Progressive forest canopy water loss during the 2012–2015 California drought

Gregory P. Asner; Philip G. Brodrick; Christopher Anderson; Nicholas R. Vaughn; David E. Knapp; Roberta E. Martin

Significance The state of California has a globally important economy and a population exceeding 38 million. The state relies on its forested watersheds to support numerous services, such as water provisioning, carbon storage, timber products, ecotourism, and recreation. However, secular changes in air temperature, combined with periodic and prolonged drought, pose a compounding challenge to forest health. Here we use new remote-sensing and modeling techniques to assess changes in the canopy water content of California’s forests from 2011 to 2015. Our resulting maps of progressive canopy water stress identify at-risk forest landscapes and watersheds at fine resolution, and offer geographically explicit information to support innovative forest management and policies in preparation for climate change. The 2012–2015 drought has left California with severely reduced snowpack, soil moisture, ground water, and reservoir stocks, but the impact of this estimated millennial-scale event on forest health is unknown. We used airborne laser-guided spectroscopy and satellite-based models to assess losses in canopy water content of California’s forests between 2011 and 2015. Approximately 10.6 million ha of forest containing up to 888 million large trees experienced measurable loss in canopy water content during this drought period. Severe canopy water losses of greater than 30% occurred over 1 million ha, affecting up to 58 million large trees. Our measurements exclude forests affected by fire between 2011 and 2015. If drought conditions continue or reoccur, even with temporary reprieves such as El Niño, we predict substantial future forest change.


PLOS ONE | 2013

Extreme Differences in Forest Degradation in Borneo: Comparing Practices in Sarawak, Sabah, and Brunei

Jane E. Bryan; Philip Shearman; Gregory P. Asner; David E. Knapp; Geraldine Aoro; Barbara Lokes

The Malaysian states of Sabah and Sarawak are global hotspots of forest loss and degradation due to timber and oil palm industries; however, the rates and patterns of change have remained poorly measured by conventional field or satellite approaches. Using 30 m resolution optical imagery acquired since 1990, forest cover and logging roads were mapped throughout Malaysian Borneo and Brunei using the Carnegie Landsat Analysis System. We uncovered ∼364,000 km of roads constructed through the forests of this region. We estimated that in 2009 there were at most 45,400 km2 of intact forest ecosystems in Malaysian Borneo and Brunei. Critically, we found that nearly 80% of the land surface of Sabah and Sarawak was impacted by previously undocumented, high-impact logging or clearing operations from 1990 to 2009. This contrasted strongly with neighbouring Brunei, where 54% of the land area remained covered by unlogged forest. Overall, only 8% and 3% of land area in Sabah and Sarawak, respectively, was covered by intact forests under designated protected areas. Our assessment shows that very few forest ecosystems remain intact in Sabah or Sarawak, but that Brunei, by largely excluding industrial logging from its borders, has been comparatively successful in protecting its forests.


Ecological Applications | 2010

Effects of fire on woody vegetation structure in African savanna.

Izak P.J. Smit; Gregory P. Asner; Navashni Govender; Ty Kennedy-Bowdoin; David E. Knapp; James Jacobson

Despite the importance of fire in shaping savannas, it remains poorly understood how the frequency, seasonality, and intensity of fire interact to influence woody vegetation structure, which is a key determinant of savanna biodiversity. We provide a comprehensive analysis of vertical and horizontal woody vegetation structure across one of the oldest savanna fire experiments, using new airborne Light Detection and Ranging (LiDAR) technology. We developed and compared high-resolution woody vegetation height surfaces for a series of large experimental burn plots in the Kruger National Park, South Africa. These 7-ha plots (total area approximately 1500 ha) have been subjected to fire in different seasons and at different frequencies, as well as no-burn areas, for 54 years. Long-term exposure to fire caused a reduction in woody vegetation up to the 5.0-7.5 m height class, although most reduction was observed up to 4 m. Average fire intensity was positively correlated with changes in woody vegetation structure. More frequent fires reduced woody vegetation cover more than less frequent fires, and dry-season fires reduced woody vegetation more than wet-season fires. Spring fires from the late dry season reduced woody vegetation cover the most, and summer fires from the wet season reduced it the least. Fire had a large effect on structure in the densely wooded granitic landscapes as compared to the more open basaltic landscapes, although proportionally, the woody vegetation was more reduced in the drier than in the wetter landscapes. We show that fire frequency and fire season influence patterns of vegetation three-dimensional structure, which may have cascading consequences for biodiversity. Managers of savannas can therefore use fire frequency and season in concert to achieve specific vegetation structural objectives.


Carbon Balance and Management | 2013

High-fidelity national carbon mapping for resource management and REDD+

Gregory P. Asner; Joseph Mascaro; Christopher Anderson; David E. Knapp; Roberta E. Martin; Ty Kennedy-Bowdoin; Michiel van Breugel; Stuart J. Davies; Jefferson S. Hall; Helene C. Muller-Landau; Catherine Potvin; Wayne P. Sousa; S. Joseph Wright; Eldredge Bermingham

BackgroundHigh fidelity carbon mapping has the potential to greatly advance national resource management and to encourage international action toward climate change mitigation. However, carbon inventories based on field plots alone cannot capture the heterogeneity of carbon stocks, and thus remote sensing-assisted approaches are critically important to carbon mapping at regional to global scales. We advanced a high-resolution, national-scale carbon mapping approach applied to the Republic of Panama – one of the first UN REDD + partner countries.ResultsIntegrating measurements of vegetation structure collected by airborne Light Detection and Ranging (LiDAR) with field inventory plots, we report LiDAR-estimated aboveground carbon stock errors of ~10% on any 1-ha land parcel across a wide range of ecological conditions. Critically, this shows that LiDAR provides a highly reliable replacement for inventory plots in areas lacking field data, both in humid tropical forests and among drier tropical vegetation types. We then scale up a systematically aligned LiDAR sampling of Panama using satellite data on topography, rainfall, and vegetation cover to model carbon stocks at 1-ha resolution with estimated average pixel-level uncertainty of 20.5 Mg C ha-1 nationwide.ConclusionsThe national carbon map revealed strong abiotic and human controls over Panamanian carbon stocks, and the new level of detail with estimated uncertainties for every individual hectare in the country sets Panama at the forefront in high-resolution ecosystem management. With this repeatable approach, carbon resource decision-making can be made on a geospatially explicit basis, enhancing human welfare and environmental protection.

Collaboration


Dive into the David E. Knapp's collaboration.

Top Co-Authors

Avatar

Gregory P. Asner

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Roberta E. Martin

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Ty Kennedy-Bowdoin

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Christopher Anderson

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Forrest G. Hall

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Joseph Mascaro

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Konrad J Wessels

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

R. Flint Hughes

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Raul Tupayachi

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Barend F.N. Erasmus

University of the Witwatersrand

View shared research outputs
Researchain Logo
Decentralizing Knowledge