Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Moody is active.

Publication


Featured researches published by David E. Moody.


Toxicology and Applied Pharmacology | 1985

Epoxide metabolism in the liver of mice treated with clofibrate (ethyl-α-(p-chlorophenoxyisobutyrate)), a peroxisome proliferator☆

David E. Moody; Dana N. Loury; Bruce D. Hammock

An increase in cytosolic epoxide hydrolase (cEH) activity occurs in the livers of mice treated with peroxisome proliferating-hypolipidemic-nongenotoxic carcinogens. As increases in activity of epoxide metabolizing enzymes may reflect the carcinogenic mechanism, a detailed comparison of the response of cEH, microsomal epoxide hydrolase (mEH), and cytosolic glutathione S-transferase (cGST) activities using the geometrical isomers trans- and cis-stilbene oxide as substrates has been performed in livers from mice treated with clofibrate (ethyl-alpha-(p-chlorophenoxyisobutyrate]. The maximal increase of cEH activity occurred at lower dietary doses of clofibrate (0.5%) and within a shorter time (5 days) than mEH and cGST (2%, 14 days) activity. After 14 days at 0.5% clofibrate, cEH, mEH, and cGST activities were 250, 175, and 165% and 290, 220, and 75% of control values in male and female mice, respectively. Withdrawal of clofibrate from the diet resulted in a reversion of activities to control values within 7 days. Clofibrate treatment shifted the apparent subcellular compartmentation of all three enzymatic activities with an increase in the ratio of soluble to particulate activity. In particular, the relative specific activity of all three enzymes decreased in the light mitochondrial (peroxisomal) cell fraction, and an increase of a mEH-like activity (benzo[a]pyrene-4,5-oxide and cis-stilbene oxide hydrolysis) in the cytosol occurred. Both the increase of cEH activity and the appearance of mEH-like activity in the cytosol are novel responses of epoxide metabolizing enzymes, which may be related to the novel cellular responses that follow clofibrate treatment, peroxisome proliferation, hypolipidemia, and nongenotoxic carcinogenesis.


Biochemical Pharmacology | 1986

Epoxide hydrolysis in the cytosol of rat liver, kidney, and testis. Measurement in the presence of glutathione and the effect of dietary clofibrate

David E. Moody; Marilyn H. Silva; Bruce D. Hammock

The hydrolysis of trans- and cis-stilbene oxide and benzo[a]pyrene-4,5-oxide was measured in cytosol and microsomes of liver, kidney, and testis of control and clofibrate-fed rats. Significant levels of nonprotein sulfhydryls were detected in cytosol from liver (4.6 mM) and testis (1.5 mM). Glutathione was moderately stable in these fractions and interfered with the partition assays as conjugates were retained in the aqueous phase along with diols. When the products were separated by thin-layer chromatography, significant amounts of glutathione-conjugates were found to have been formed in the cytosol of liver and testis. Overnight dialysis or preincubation of cytosol with 0.5 mM diethylmaleate eliminated conjugate formation without affecting diol production. In dialyzed cytosol from clofibrate-fed rats (0.5%, 14 days), the rates of hydrolysis of trans-stilbene oxide were 506, 171, and 96% of controls for liver, kidney, and testis, respectively, and 126% of controls in liver microsomes. Rates of hydrolysis of cis-stilbene oxide were 149, 172, and 96% of controls in microsomes and 154, 124, and 91% of controls in cytosols from livers, kidneys, and testis of clofibrate-fed rats respectively. Hydrolysis of benzo[a]pyrene-4,5-oxide was similar to that of cis-stilbene oxide. Conjugation of the cis-stilbene oxide with glutathione was detected in cytosols from all three tissues with lesser amounts in the microsomes from liver and kidneys. After clofibrate treatment, the rates of this activity were 200, 173, and 95% of controls in cytosol from liver, kidneys and testis, and 203 and 202% of controls in microsomes from liver and kidneys respectively. These results indicate that epoxide hydrolysis and conjugation in rat liver and kidney are responsive to clofibrate treatment and support other evidence which suggests that hydrolysis of cis- and trans-stilbene oxides in cytosol is catalyzed, in part, by distinct enzymes.


Biochemical Pharmacology | 1985

Effect of dietary clofibrate on epoxide hydrolase activity in tissues of mice

Dana N. Loury; David E. Moody; Byung W. Kim; Bruce D. Hammock

The effects of dietary clofibrate on the epoxide-metabolizing enzymes of mouse liver, kidney, lung and testis were evaluated using trans-stilbene oxide as a selective substrate for the cytosolic epoxide hydrolase, cis-stilbene oxide and benzo[a]pyrene 4,5-oxide as substrates for the microsomal form, and cis-stilbene oxide as a substrate for glutathione S-transferase activity. The hydration of trans-stilbene oxide was greatest in liver followed by kidney greater than lung greater than testis. Its hydrolysis was increased significantly in the cytosolic fraction of liver and kidney of clofibrate-treated mice and in the microsomes from the liver. Isoelectric focusing indicates that the same enzyme is responsible for hydrolysis of trans-stilbene oxide in normal and induced liver and kidney. Clofibrate induced glutathione S-transferase activity on cis-stilbene oxide only in the liver. Hydrolysis of both cis-stilbene oxide and benzo[a]pyrene 4,5-oxide was highest in testis followed by liver greater than lung greater than kidney. Hydration of cis-stilbene oxide was induced significantly in both liver and kidney by clofibrate but that of benzo[a]pyrene 4,5-oxide was induced only in the liver. These and other data based on ratios of hydration of benzo[a]pyrene 4,5-oxide to cis-stilbene oxide in tissues of normal and induced animals indicate that there are one or more novel epoxide hydrolase activities which cannot be accounted for by either the classical cytosolic or microsomal hydrolases. These effects are notable in the microsomes of kidney and especially in the cytosol of testis.


Toxicology and Applied Pharmacology | 1987

The effect of tridiphane (2-(3,5-dichlorophenyl)-2-(2,2,2-trichloroethyl)oxirane) on hepatic epoxide-metabolizing enzymes: Indications of peroxisome proliferation

David E. Moody; Bruce D. Hammock

Administration of tridiphane (Tandem, DOWCO 356, 2-(3,5-dichlorophenyl)-2-(2,2,2-trichloroethyl)oxirane) to male Swiss-Webster mice for 3 days at 100, 250, and 500 mg/kg (ip) resulted in increases in liver weight accompanied by an increase in mitotic index and increases in large particle and microsomal protein. Epoxide hydrolase (EH) activity towards cis-stilbene oxide (CSO, microsomal EH) was elevated in microsomes and cytosol, a decrease in microsomal cholesterol EH was found, and hydrolysis of trans-stilbene oxide (TSO, cytosolic EH) was elevated in the cytosol but not in the microsomes. Glutathione S-transferase (GST) activity was elevated in cytosol for CSO, TSO, and 1,2-dichloro-4-nitrobenzene (DCNB), with inconsistent responses found with 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-epoxy-3-(p-nitrophenoxy)propane (ENPP). Microsomal GST was not consistently effected by tridiphane. Clofibrate (500 mg/kg, 3 daily ip injections) treatment resulted in similar responses in liver size, microsomal protein, and the EHs. The increase in cytosolic EH activity previously has been noted only in animals treated with peroxisome proliferators. Examination of livers from mice treated with 250 mg/kg tridiphane revealed that an increase in hepatic peroxisomes was apparent after 3 days of treatment. This was accompanied by decreases in serum cholesterol and triglyceride levels and increases in liver carnitine acetyl transferase and cyanide-insensitive oxidation of palmitoyl-CoA. This study demonstrates that tridiphane does have in vivo effects on mammalian epoxide-metabolizing enzymes and extends the association of increased cytosolic epoxide hydrolase activity with peroxisome proliferation.


Archives of Biochemistry and Biophysics | 1986

Comparison of crude and affinity purified cytosolic epoxide hydrolases from hepatic tissue of control and clofibrate-fed mice.

Bruce D. Hammock; Glenn D. Prestwich; Dana N. Loury; Peter Y. K. Cheung; Wai Si Eng; Sang Kyu Park; David E. Moody; Marilyn H. Silva; Roger N. Wixtrom

An affinity purification procedure was developed for the cytosolic epoxide hydrolase based upon the selective binding of the enzyme to immobilized methoxycitronellyl thiol. Several elution systems were examined, but the most successful system employed selective elution with a chalcone oxide. This affinity system allowed the purification of the cytosolic epoxide hydrolase activity from livers of both control and clofibrate-fed mice. A variety of biochemical techniques including pH dependence, substrate preference, kinetics, inhibition, amino acid analysis, peptide mapping, Western blotting, analytical isoelectric focusing, and gel permeation chromatography failed to distinguish between the enzymes purified from control and clofibrate-fed animals. The quantitative removal of the cytosolic epoxide hydrolase acting on trans-stilbene oxide from 100,000g supernatants, allowed analysis of remaining activities acting differentially on cis-stilbene oxide and benzo[a]pyrene 4,5-oxide. Such analysis indicated the existence of a novel epoxide hydrolase activity in the cytosol of mouse liver preparations.


Archives of Biochemistry and Biophysics | 1985

Cyclopropyl oxiranes: Reversible inhibitors of cytosolic and microsomal epoxide hydrolases

Glenn D. Prestwich; Irene Lucarelli; Sang Kyu Park; Dana N. Loury; David E. Moody; Bruce D. Hammock

A series of aryl- and alkyl-substituted cyclopropyl oxiranes were synthesized as potential suicide inhibitors of mouse liver epoxide hydrolase (EH). The inhibitory potency of each compound and its corresponding alkene precursor was determined with mouse liver EHs using [3H]-cis-stilbene oxide as substrate for microsomal EH (mEH) and for glutathione-S-transferase, and using [3H]-trans-stilbene oxide for cytosolic EH (cEH). The cyclopropyl oxiranes all showed low (26-60% at 5 X 10(-4) M) inhibition of glutathione transferase and moderate inhibition (I50 = 5 X 10(-4) to 6 X 10(-6) M) for cEH and mEH. cis-Phenylcyclopropyl oxirane had an I50 for mEH near that for a commonly used inhibitor, 1,1,1-trichloropropene oxide. Inhibition appeared competitive and reversible, and the cyclopropyl oxiranes appeared to function as alternate substrates. Absence of irreversible inhibition is evidence against a strongly electrophilic epoxide-opening mechanism involving a cyclopropyl carbinyl-homoallyl cation rearrangement. Instead, a concerted mechanism is favored, in which electrophilic opening and hydroxide attack occur in a concerted fashion.


Toxicology Letters | 1991

The effect of structurally divergent herbicides on mouse liver xenobiotic-metabolizing enzymes (P-450-dependent mono-oxygenases, epoxide hydrolases and glutathione S-transferases) and carnitine acetyltransferase

David E. Moody; Bruce A. Narloch; Lee R. Shull; Bruce D. Hammock

Male mice were treated with structurally diverse herbicides to study their effect on liver xenobiotic-metabolizing enzymes. Chlorfiurecol, trifluralin, alachlor, propham, MCPP and 2,4-DP caused increases in phase I (cytochrome P-450, ethoxycoumarin O-deethylase, and/or aminopyrine N-demethylase) and phase II (microsomal epoxide hydrolase and cytosolic glutathione S-transferase) activities. MCPP and 2,4-DP also increased cytosolic epoxide hydrolase and carnitine acetyltransferase activities suggestive of peroxisome proliferation. Benthiocarb and molinate increased only some phase II enzyme activities. Dicamba, at the dose employed, caused mortality and decreases in some of the enzymes monitored. Most of the herbicides tested induced xenobiotic-metabolizing enzyme activities, the pattern of induction being dependent on herbicide structure.


Pesticide Biochemistry and Physiology | 1987

The effects of dicofol on induction of hepatic microsomal metabolism in rats

Bruce A. Narloch; Michael P. Lawton; David E. Moody; Bruce D. Hammock; Lee R. Shull

Abstract In a comparative study, the induction effects of dicofol, technical Kelthane, and DDT on hepatic microsomal and cytosolic enzyme activities in rats were compared with those effects produced by phenobarbital (PhB) and β-naphthoflavone (BNF). Male rats (ca. 250 g) were injected (ip) for 4 consecutive days with 1.0 ml of vehicle containing either dicofol (1.5, 15.0, 29.5, or 59.0 m M , Kelthane (dicofol content equal to 29.5 or 59.0 m M ), DDT (59.0 m M ), or BNF (36.7 m M ). Liver weights, microsomal protein, and cytochrome P -450 concentrations and microsomal and cytosolic enzyme specific activities were measured. Dicofol produced dose-related increases in all of the parameters measured except liver weight and cytosolic epoxide hydrolase activity. At a concentration of 59.0 m M , dicofol increased the concentrations of microsomal protein (1.7-fold) and cytochrome P -450 (2.9-fold), and the specific activities of cytochrome c reductase (1.6-fold), ethoxycoumarin O -deethylase (2.3-fold), aminopyrine N -demethylase (3.0-fold), microsomal epoxide hydrolase (2.6-fold), and glutathione S -transferase (2.9-fold). The induction potency of dicofol was equivalent to Kelthane, DDT, and PhB at equimolar (59.0 m M ) concentrations of chemical.


Archives of Biochemistry and Biophysics | 1987

Purification of microsomal epoxide hydrolase from liver of rhesus monkey: partial separation of cis- and trans-stibene oxide hydrolase

David E. Moody; Bruce D. Hammock

Solubilized rhesus monkey liver microsomes were used as the starting material for the purification of epoxide (cis-stilbene oxide) hydrolase. Successive chromatography over DEAE-Sephacel followed by CM-cellulose resulted in two peaks of activity, CM A and CM B. Passage of these two eluates over separate hydroxyapatite columns resulted in two peaks of activity from CM A, HA A1, and HA A2, and one peak from CM B and HA B, with respective recoveries of 1, 7, and 0.2% of cis-stilbene oxide hydrolase activities. A similar recovery was found for benzo[a]pyrene-4,5-oxide hydrolase, while trans-stilbene oxide hydrolase activity coeluted only in HA A2. Fraction HA A1 was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblots of the three eluates and solubilized microsomes incubated with anti-HA A1 demonstrated a single band at 49 kDa in each fraction. The three eluates were differentially affected by the inhibitors of epoxide hydrolase, trichloropropene oxide and 4-phenylchalcone oxide, and addition of Lubrol PX and phospholipid. Immunoprecipitation of HA A2 resulted in coprecipitation of cis- and trans-stilbene oxide hydrolase activity. Upon immunoprecipitation of solubilized microsomes, all the cis-stilbene oxide and benzo[a]pyrene-4,5-oxide, but only 50-60% of trans-stilbene oxide hydrolase activity was precipitated. These studies support findings with other species that (i) an immunochemically distinct cytosolic-like epoxide hydrolase exists in microsomes, and (ii) microsomal epoxide hydrolase activity can be separated during ion-exchange chromatography giving proteins with similar molecular weights and immunochemical cross-reactivity. The precipitation of cis- and trans-stilbene oxide hydrolase activity in eluate HA A2 provides convincing evidence that these isozymes are not structurally identical.


Biochemical Pharmacology | 1988

Sodium cholate extraction of rat liver nuclear xenobiotic-metabolizing enzymes

David E. Moody; Gary A. Clawson; David A. Geller; L A Taylor; Jane Button; Dana N. Loury; Bruce D. Hammock; Edward A. Smuckler

DNA is the purported target of several carcinogenic and mutagenic agents. Nuclear enzymes which could generate or detoxify reactive metabolites are of major concern. Several such enzymes have been identified within nuclei, but obtaining samples with enriched content or activity is difficult, time-consuming, and uses harsh isolation techniques. Extraction of rat liver nuclear suspensions with cholate-containing buffer results in solubilization of 25-30% of the protein. Linear extraction was obtained for total protein and cytochromes P-450 and b5, NADPH-cytochrome P-450 reductase, NADH-cytochrome b5 reductase, DT-diaphorase, and microsomal-like epoxide hydrolase with specific activities comparable to values reported for isolated nuclear membrane, while the yield was five to ten times greater. Detergent extracts of rat liver nuclei were employed to study the comparative response of microsomal and nuclear enzymes to chemical treatment. While the responses to acute inductive (phenobarbital and 3-methylcholanthrene) and toxic (carbon tetrachloride and dibromochloropropane) treatments were qualitatively similar, an initiation-promotion protocol (diethylnitrosamine with phenobarbital promotion) resulted in divergent responses between the enzymes in the two subcellular fractions. Detergent extracts of nuclei offer an efficient means of recovering xenobiotic-metabolizing enzymes from rat liver nuclei, and have been utilized to demonstrate a differential response of nuclear enzymes during preneoplastic development.

Collaboration


Dive into the David E. Moody's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee R. Shull

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge