Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Powell is active.

Publication


Featured researches published by David E. Powell.


Integrated Environmental Assessment and Management | 2012

Trophic magnification factors: Considerations of ecology, ecosystems, and study design

Katrine Borgå; Karen A. Kidd; Derek C. G. Muir; Olof Berglund; Jason M. Conder; Frank A. P. C. Gobas; John R. Kucklick; Olaf Malm; David E. Powell

Recent reviews by researchers from academia, industry, and government have revealed that the criteria used by the Stockholm Convention on persistent organic pollutants under the United Nations Environment Programme are not always able to identify the actual bioaccumulative capacity of some substances, by use of chemical properties such as the octanol-water partitioning coefficient. Trophic magnification factors (TMFs) were suggested as a more reliable tool for bioaccumulation assessment of chemicals that have been in commerce long enough to be quantitatively measured in environmental samples. TMFs are increasingly used to quantify biomagnification and represent the average diet-to-consumer transfer of a chemical through food webs. They differ from biomagnification factors, which apply to individual species and can be highly variable between predator-prey combinations. The TMF is calculated from the slope of a regression between the chemical concentration and trophic level of organisms in the food web. The trophic level can be determined from stable N isotope ratios (δ(15) N). In this article, we give the background for the development of TMFs, identify and discuss impacts of ecosystem and ecological variables on their values, and discuss challenges and uncertainties associated with contaminant measurements and the use of δ(15) N for trophic level estimations. Recommendations are provided for experimental design, data treatment, and statistical analyses, including advice for users on reporting and interpreting TMF data. Interspecies intrinsic ecological and organismal properties such as thermoregulation, reproductive status, migration, and age, particularly among species at higher trophic levels with high contaminant concentrations, can influence the TMF (i.e., regression slope). Following recommendations herein for study design, empirical TMFs are likely to be useful for understanding the food web biomagnification potential of chemicals, where the target is to definitively identify if chemicals biomagnify (i.e., TMF > or < 1). TMFs may be less useful in species- and site-specific risk assessments, where the goal is to predict absolute contaminant concentrations in organisms in relation to threshold levels.


Integrated Environmental Assessment and Management | 2012

Use of trophic magnification factors and related measures to characterize bioaccumulation potential of chemicals

Jason M. Conder; Frank A. P. C. Gobas; Katrine Borgå; Derek C. G. Muir; David E. Powell

Recent technical workgroups have concluded that trophic magnification factors (TMFs) are useful in characterizing the bioaccumulation potential of a chemical, because TMFs provide a holistic measure of biomagnification in food webs. The objectives of this article are to provide a critical analysis of the application of TMFs for regulatory screening for bioaccumulation potential, and to discuss alternative methods for supplementing TMFs and assessing biomagnification in cases where insufficient data are available to determine TMFs. The general scientific consensus is that chemicals are considered bioaccumulative if they exhibit a TMF > 1. However, comparison of study-derived TMF estimates to this threshold value should be based on statistical analyses such that variability is quantified and false positive and false negative errors in classification of bioaccumulation potential are minimized. An example regulatory decision-making framework is presented to illustrate the use of statistical power analyses to minimize assessment errors. Suggestions for considering TMF study designs and TMFs obtained from multiple studies are also provided. Alternative bioaccumulation metrics are reviewed for augmenting TMFs and for substituting in situations in which field data for deriving TMFs are unavailable. Field-derived, trophic level-normalized biomagnification factors (BMF(TL) s), biota-sediment accumulation factors (BSAF(TL) s), and bioaccumulation factors (BAF(TL) s) are recommended if data are available, because these measures are most closely related to the biomagnification processes characterized by TMFs. Field- and laboratory-derived BAFs and bioconcentration factors are generally less accurate in predicting biomagnification. However, bioconcentration factors and BAFs remain useful for characterizing bioaccumulation as a result of the transfer of chemicals from abiotic environmental compartments to lower trophic levels. Modeling that incorporates available laboratory and field data should also be considered for augmenting assessments of bioaccumulation potential. Modeling can provide a TMF-focused assessment for new or unreleased chemicals in the absence of field data by estimating TMF values and theoretical relationships between physical-chemical properties and TMF values (quantitative structure-activity relationships). An illustration of the use of physicochemical properties for estimating TMFs is provided. Overall, TMFs provide valuable information regarding bioaccumulation potential and should be incorporated into regulatory decision making following the suggestions outlined in this article.


Environmental Toxicology and Chemistry | 2013

MATHEMATICAL RELATIONSHIPS BETWEEN METRICS OF CHEMICAL BIOACCUMULATION IN FISH

Donald Mackay; Jon A. Arnot; Frank A. P. C. Gobas; David E. Powell

Five widely used metrics of bioaccumulation in fish are defined and discussed, namely the octanol-water partition coefficient (KOW ), bioconcentration factor (BCF), bioaccumulation factor (BAF), biomagnification factor (BMF), and trophic magnification factor (TMF). Algebraic relationships between these metrics are developed and discussed using conventional expressions for chemical uptake from water and food and first-order losses by respiration, egestion, biotransformation, and growth dilution. Two BCFs may be defined, namely as an equilibrium partition coefficient KFW or as a nonequilibrium BCFK in which egestion losses are included. Bioaccumulation factors are shown to be the product of the BCFK and a novel equilibrium multiplier M containing 2 ratios, namely, the diet-to-water concentration ratio and the ratio of uptake rate constants for respiration and dietary uptake. Biomagnification factors are shown to be proportional to the lipid-normalized ratio of the predator/prey values of BCFK and the ratio of the equilibrium multipliers. Relationships with TMFs are also discussed. The effects of chemical hydrophobicity, biotransformation, and growth are evaluated by applying the relationships to a range of illustrative chemicals of varying KOW in a linear 4-trophic-level food web with typical values for uptake and loss rate constants. The roles of respiratory and dietary intakes are demonstrated, and even slow rates of biotransformation and growth can significantly affect bioaccumulation. The BCFK s and the values of M can be regarded as the fundamental determinants of bioaccumulation and biomagnification in aquatic food webs. Analyzing data from food webs can be enhanced by plotting logarithmic lipid-normalized concentrations or fugacities as a linear function of trophic level to deduce TMFs. Implications for determining bioaccumulation by laboratory tests for regulatory purposes are discussed.


Environmental Science & Technology | 2013

Improving the quality and scientific understanding of trophic magnification factors (TMFs).

Lawrence P. Burkhard; Katrine Borgå; David E. Powell; P.E.G. Leonards; Derek C. G. Muir; Thomas F. Parkerton; Kent B. Woodburn

Magnification Factors (TMFs) Lawrence P. Burkhard,†,* Katrine Borga,̊‡ David E. Powell, Pim Leonards, Derek C. G. Muir, Thomas F. Parkerton, and Kent B. Woodburn †Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States ‡Norwegian Institute for Water Research (NIVA), Oslo, Norway Dow Corning Corporation, Health and Environmental Sciences, Midland, Michigan 48640, United States Institute for Environmental Studies, VU University, The Netherlands Aquatic Contaminants Research Division, Water, Science, and Technology Directorate, Environment Canada, Burlington, Ontario, Canada ExxonMobil Biomedical Sciences, Houston, Texas 77002, United States


Chemosphere | 2012

An updated state of the science EQC model for evaluating chemical fate in the environment: Application to D5 (decamethylcyclopentasiloxane)

Lauren Hughes; Donald Mackay; David E. Powell; Jaeshin Kim

The EQuilibrium Criterion (EQC) model developed and published in 1996 has been widely used for screening level evaluations of the multimedia, fugacity-based environmental fate of organic chemicals for educational, industrial, and regulatory purposes. Advances in the science of chemical partitioning and reactivity and the need for more rigorous regulatory evaluations have resulted in a need to update the model. The New EQC model is described which includes an improved treatment of input partitioning and reactivity data, temperature dependence and an easier sensitivity and uncertainty analysis but uses the same multi-level approach, equations and environmental parameters as in the original version. A narrative output is also produced. The New EQC model, which uses a Microsoft Excel platform, is described and applied in detail to decamethylcyclopentasiloxane (D5; CAS No. 541-02-6). The implications of these results for the more detailed exposure and risk assessment of D5 are discussed. The need for rigorous evaluation and documentation of the input parameters is outlined.


Environmental Toxicology and Chemistry | 2015

Decamethylcyclopentasiloxane (D5) environmental sources, fate, transport, and routes of exposure.

Donald Mackay; Christina Cowan-Ellsberry; David E. Powell; Kent B. Woodburn; Shihe Xu; Gary Kozerski; Jaeshin Kim

The environmental sources, fate, transport, and routes of exposure of decamethylcyclopentasiloxane (D5; CAS no. 541-02-6) are reviewed in the present study, with the objective of contributing to effective risk evaluation and assessment of this and related substances. The present review, which is part of a series of studies discussing aspects of an effective risk evaluation and assessment, was prompted in part by the findings of a Board of Review undertaken to comment on a decision by Environment Canada made in 2008 to subject D5 to regulation as a toxic substance. The present review focuses on the early stages of the assessment process and how information on D5s physical-chemical properties, uses, and fate in the environment can be integrated to give a quantitative description of fate and exposure that is consistent with available monitoring data. Emphasis is placed on long-range atmospheric transport and fate in water bodies receiving effluents from wastewater treatment plants (along with associated sediments) and soils receiving biosolids. The resulting exposure estimates form the basis for assessments of the resulting risk presented in other studies in this series. Recommendations are made for developing an improved process by which D5 and related substances can be evaluated effectively for risk to humans and the environment.


Chemosphere | 2013

Uncertainty analysis using a fugacity-based multimedia mass-balance model: Application of the updated EQC model to decamethylcyclopentasiloxane (D5)

Jaeshin Kim; David E. Powell; Lauren Hughes; Donald Mackay

The EQuilibrium Criterion (EQC) model developed and published in 1996 was recently revised to include improved treatment of input partitioning and reactivity data, temperature dependence and an easier sensitivity and uncertainty analysis. This New EQC model was used to evaluate the multimedia, fugacity-based fate of decamethylcyclopentasiloxane (D5; CAS No. 541-02-6) in the environment over a temperature range of 1-25°C. In addition, Monte Carlo uncertainty analysis was used to quantitatively determine the influence of temperature and input partitioning and reactivity data on the behavior of D5 under various emission scenarios. Results indicated that emission mode was the most influential factor determining the fate and distribution of D5 in the model environment. When emitted to air and soil, D5 partitioned to and remained in the air compartment where rates of removal from degradation and advection processes were relatively rapid. In contrast, D5 emitted to water resulted in a substantial mass fraction of D5 being accumulated in the sediment compartment, where rates of removal from degradation and advection processes were slow. The mass distributions and fate of D5 in the model environment were strongly influenced by multiple input parameters, including temperature, the mode of emission (especially emission rate to water), KOC and half-life in air. As temperature decreased from 25°C to 1°C, KOC and half-life in air became increasingly more influential such that the mass distribution of D5 increased in air and decreased in sediment, resulting in decreased overall persistence.


Environmental Toxicology and Chemistry | 2015

Fugacity and activity analysis of the bioaccumulation and environmental risks of decamethylcyclopentasiloxane (D5).

Frank A. P. C. Gobas; Shihe Xu; Gary Kozerski; David E. Powell; Kent B. Woodburn; Donald Mackay; Anne Fairbrother

As part of an initiative to evaluate commercial chemicals for their effects on human and environmental health, Canada recently evaluated decamethylcyclopentasiloxane (D5; CAS no. 541-02-06), a high-volume production chemical used in many personal care products. The evaluation illustrated the challenges encountered in environmental risk assessments and the need for the development of better tools to increase the weight of evidence in environmental risk assessments. The present study presents a new risk analysis method that applies thermodynamic principles of fugacity and activity to express the results of field monitoring and laboratory bioaccumulation and toxicity studies in a comprehensive risk analysis that can support risk assessments. Fugacity and activity ratios of D5 derived from bioaccumulation measures indicate that D5 does not biomagnify in food webs, likely because of biotransformation. The fugacity and activity analysis further demonstrates that reported no-observed-effect concentrations of D5 normally cannot occur in the environment. Observed fugacities and activities in the environment are, without exception, far below those corresponding with no observed effects, in many cases by several orders of magnitude. This analysis supports the conclusion of the Canadian Board of Review and the Minister of the Environment that D5 does not pose a danger to the environment. The present study further illustrates some of the limitations of a persistence-bioaccumulation-toxicity-type criteria-based risk assessment approach and discusses the merits of the fugacity and activity approach to increase the weight of evidence and consistency in environmental risk assessments of commercial chemicals.


Chemosphere | 2014

An updated Quantitative Water Air Sediment Interaction (QWASI) model for evaluating chemical fate and input parameter sensitivities in aquatic systems: application to D5 (decamethylcyclopentasiloxane) and PCB-180 in two lakes.

Donald Mackay; Lauren Hughes; David E. Powell; Jaeshin Kim

The QWASI fugacity mass balance model has been widely used since 1983 for both scientific and regulatory purposes to estimate the concentrations of organic chemicals in water and sediment, given an assumed rate of chemical emission, advective inflow in water or deposition from the atmosphere. It has become apparent that an updated version is required, especially to incorporate improved methods of obtaining input parameters such as partition coefficients. Accordingly, the model has been revised and it is now available in spreadsheet format. Changes to the model are described and the new version is applied to two chemicals, D5 (decamethylcyclopentasiloxane) and PCB-180, in two lakes, Lake Pepin (MN, USA) and Lake Ontario, showing the models capability of illustrating both the chemical to chemical differences and lake to lake differences. Since there are now increased regulatory demands for rigorous sensitivity and uncertainty analyses, these aspects are discussed and two approaches are illustrated. It is concluded that the new QWASI water quality model can be of value for both evaluative and simulation purposes, thus providing a tool for obtaining an improved understanding of chemical mass balances in lakes, as a contribution to the assessment of fate and exposure and as a step towards the assessment of risk.


Environmental Toxicology and Chemistry | 2015

Characterization of ecological risks from environmental releases of decamethylcyclopentasiloxane (D5)

Anne Fairbrother; G. Allen Burton; Stephen J. Klaine; David E. Powell; Charles A. Staples; Ellen Mihaich; Kent B. Woodburn; Frank A. P. C. Gobas

Decamethylcyclopentasiloxane (D5) is used in personal care products and industrial applications. The authors summarize the risks to the environment from D5 based on multiple lines of evidence and conclude that it presents negligible risk. Laboratory and field studies show that D5 is not toxic to aquatic organisms or benthic invertebrates up to its solubility limit in water or porewater or its sorptive capacity in sediment. Comparison of lipid-normalized internal concentrations with measured concentrations in benthos indicates that field-collected organisms do not achieve toxic levels of D5 in their tissues, suggesting negligible risk. Exposure to D5 resulted in a slight reduction of root biomass in barley at test concentrations 2 orders of magnitude greater than measured D5 levels in biosolids-amended soils and more than twice as high as the maximum calculated sorptive capacity of the soil. No effects were observed in soil invertebrates exposed to similar concentrations, indicating that D5 poses a de minimis risk to the terrestrial environment. High rates of metabolism and elimination of D5 compared with uptake rates from food results in biodilution in the food web rather than biomagnification, culminating in de minimis risk to higher trophic level organisms via the food chain. A fugacity approach substantiates all conclusions that were made on a concentration basis.

Collaboration


Dive into the David E. Powell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge