Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Smart is active.

Publication


Featured researches published by David E. Smart.


Nature Genetics | 2014

A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations

Klaus Bønnelykke; Patrick Sleiman; Kasper Nielsen; Eskil Kreiner-Møller; Josep M. Mercader; Danielle Belgrave; Herman T. den Dekker; Anders Husby; Astrid Sevelsted; Grissel Faura-Tellez; Li Mortensen; Lavinia Paternoster; Richard Flaaten; Anne Mølgaard; David E. Smart; Philip Francis Thomsen; Morten Rasmussen; Sílvia Bonàs-Guarch; Claus Holst; Ellen Aagaard Nohr; Rachita Yadav; Michael March; Thomas Blicher; Peter M. Lackie; Vincent W. V. Jaddoe; Angela Simpson; John W. Holloway; Liesbeth Duijts; Adnan Custovic; Donna E. Davies

Asthma exacerbations are among the most frequent causes of hospitalization during childhood, but the underlying mechanisms are poorly understood. We performed a genome-wide association study of a specific asthma phenotype characterized by recurrent, severe exacerbations occurring between 2 and 6 years of age in a total of 1,173 cases and 2,522 controls. Cases were identified from national health registries of hospitalization, and DNA was obtained from the Danish Neonatal Screening Biobank. We identified five loci with genome-wide significant association. Four of these, GSDMB, IL33, RAD50 and IL1RL1, were previously reported as asthma susceptibility loci, but the effect sizes for these loci in our cohort were considerably larger than in the previous genome-wide association studies of asthma. We also obtained strong evidence for a new susceptibility gene, CDHR3 (encoding cadherin-related family member 3), which is highly expressed in airway epithelium. These results demonstrate the strength of applying specific phenotyping in the search for asthma susceptibility genes.


Gut | 2002

Transcriptional regulation of hepatic stellate cell activation

Derek A. Mann; David E. Smart

The hepatic stellate cell (HSC) is now well established as the key cellular element involved in the development of hepatic fibrosis and because of this there is considerable interest in establishing the molecular events that trigger and perpetuate HSC activation. HSC activation at the level of gene transcription requires the coordinated activity of several key transcriptional regulators of the HSC genome. The considerable advances that have been made in the past five years into the mechanisms by which specific families of transcription factors regulate the profibrogenic characteristics of the activated HSC are reviewed.


American Journal of Pathology | 2005

Nuclear Factor-κB1 (p50) Limits the Inflammatory and Fibrogenic Responses to Chronic Injury

Fiona Oakley; Jelena Mann; Sarah Nailard; David E. Smart; Narendra Mungalsingh; Christothea Constandinou; Shakir Ali; Susan J. Wilson; Harry Millward-Sadler; John P. Iredale; Derek A. Mann

In this study we addressed the role of the nuclear factor (NF)-kappaB1/p50 subunit in chronic injury of the liver by determining the inflammatory and fibrotic responses of nfkappab1-null mice in an experimental model that mimics chronic liver disease. Mice received repeated hepatic injuries throughout 12 weeks by intraperitoneal injection of the hepatotoxin carbon tetrachloride. In response nfkappab1(-/-) mice developed more severe neutrophilic inflammation and fibrosis compared to nfkappab1(+/+) mice. This phenotype was associated with elevated hepatic expression of tumor necrosis factor (TNF)-alpha, which was localized to regions of the liver associated with inflammation and fibrosis. Hepatic stellate cells are important regulators of hepatic inflammatory and fibrogenic events but normally do not express TNF-alpha. Hepatic stellate cells derived from nfkappab1(-/-) mice expressed TNF-alpha promoter activity, mRNA, and protein. By contrast the expression of other NF-kappaB-responsive genes (ICAM1 and interleukin-6) was similar between nfkappab1(-/-) and nfkappab1(+/+) cells. We provide experimental evidence that the inappropriate expression of TNF-alpha by nfkappab1(-/-) cells is because of lack of a p50-dependent histone deacetylase 1 (HDAC1)-mediated repression of TNF-alpha gene transcription. Taken together these data indicate that the p50 NF-kappaB subunit plays a critical protective role in the injured liver by limiting the expression of TNF-alpha and its recruitment of inflammatory cells.


The International Journal of Biochemistry & Cell Biology | 2004

Induction of myofibroblast MMP-9 transcription in three-dimensional collagen I gel cultures: regulation by NF-κB, AP-1 and Sp1

Terumi Takahra; David E. Smart; Fiona Oakley; Derek A. Mann

Chronic liver injury leads to a progressive wound healing response that eventually results in hepatic fibrosis characterised by net deposition of fibrillar extracellular matrix (ECM) and a qualitative shift from type IV to type I/III collagen. The pivotal cellular event underlying this response is hepatic stellate cell (HSC) activation towards a myofibroblast-like phenotype. Activated HSC contribute to ECM remodelling via secretion of type I/III collagens and matrix metalloproteinases (MMPs). Previous studies showed that three-dimensional (3D) contact of activated HSC with type I collagen further stimulates the ECM remodelling properties of HSC by inducing the type IV gelatinase, MMP-9. The aim of the current study was to confirm transcriptional activation of the MMP-9 gene and identify transcription factors regulating this response. Gelatin zymography and Northern blotting were used to confirm induction of MMP-9 protein and mRNA expression in primary rat HSC cultured in a three-dimensional collagen I gel lattice. MMP-9 promoter studies in transfected HSC and electrophoretic mobility shift assay (EMSA) were employed to study transcriptional events. Both NF-kappaB and AP-1 DNA were induced in HSC cultured in 3D collagen I gels and binding sites for these factors in the MMP-9 promoter were crucial for induction of transcription. By contrast removal of an Sp1 site in the promoter enhanced transcription, while over-expression of either Sp1 or Sp3 repressed transcription. It is concluded that 3D contact of activated HSC with collagen I stimulates MMP-9 expression by elevating NF-kappaB and AP-1 activities which are able to overcome the repressive influence of Sp1/Sp3 on MMP-9 gene transcription.


Journal of Biological Chemistry | 2001

JunD Regulates Transcription of the Tissue Inhibitor of Metalloproteinases-1 and Interleukin-6 Genes in Activated Hepatic Stellate Cells

David E. Smart; Karen J. Vincent; Michael James Paul Arthur; Oliver Eickelberg; Marc Castellazzi; Jelena Mann; Derek A. Mann

Activation of hepatic stellate cells (HSCs) to a myofibroblast-like phenotype is the pivotal event in hepatic wound healing and fibrosis. Rat HSCs activated in vitro express JunD, Fra2, and FosB as the predominant AP-1 DNA-binding proteins, and all three associate with an AP-1 sequence that is essential for activity of the tissue inhibitor of metalloproteinases-1 (TIMP-1) promoter. In this study, we used expression vectors for wild-type, dominant-negative, and forced homodimeric (Jun/eb1 chimeric factors) forms of JunD and other Fos and Jun proteins to determine the requirement for JunD in the transcriptional regulation of the TIMP-1 and interleukin-6 (IL-6) genes. JunD activity was required for TIMP-1 gene promoter activity, whereas overexpression of Fra2 or FosB caused a repression of promoter activity. The ability of homodimeric JunD/eb1 to elevate TIMP-1 promoter activity supports a role for JunD homodimers as the major AP-1-dependent transactivators of the TIMP-1 gene. IL-6 promoter activity was induced upon activation of HSCs and also required JunD activity; however, expression of JunD/eb1 homodimers resulted in transcriptional repression. Mutagenesis of the IL-6 promoter showed that an AP-1 DNA-binding site previously reported to be an activator of transcription in fibroblasts functions as a suppressor of promoter activity in HSCs. We conclude that JunD activates IL-6 gene transcription as a heterodimer and operates at an alternative DNA-binding site in the promoter. The relevance of these findings to events occurring in the injured liver was addressed by showing that AP-1 DNA-binding complexes are induced during HSC activation and contain JunD as the predominant Jun family protein. JunD is therefore an important transcriptional regulator of genes responsive to Jun homo- and heterodimers in activated HSCs.


Hepatology | 2006

JunD is a profibrogenic transcription factor regulated by Jun N-terminal kinase-independent phosphorylation

David E. Smart; Karen Green; Fiona Oakley; Jonathan B. Weitzman; Moshe Yaniv; Gary M. Reynolds; Jelena Mann; Harry Millward-Sadler; Derek A. Mann

JunD is implicated in the regulation of hepatic stellate cell (HSC) activation and liver fibrosis via its transcriptional regulation of the tissue inhibitor of metalloproteinases‐1 (TIMP‐1) gene. In the present study we found in vivo evidence of a role for JunD in fibrogenesis. Expression of JunD was demonstrated in alpha‐SMA‐positive activated HSCs of fibrotic rodents and human livers. The junD−/− mice were protected from carbon tetrachloride–induced fibrosis. The livers of injured junD−/− mice displayed significantly reduced formation of fibrotic crosslinked collagen and a smaller number of alpha‐SMA‐positive HSCs compared with those of wild‐type (wt) mice. Hepatic TIMP‐1 mRNA expression in injured junD−/− mice was 78% lower and in culture activated junD−/− HSCs was 50%‐80% lower than that in wt mice. In examining the signal transduction mechanisms that regulate JunD‐dependent TIMP‐1 expression, we found a role for phosphorylation of the Ser100 residue of JunD but ruled out JNK as a mediator of this event, suggesting ERK1/2 is utilized. In conclusion, a signaling pathway for the development of fibrosis involves the regulation of TIMP‐1 expression by phosphorylated JunD. (HEPATOLOGY 2006;44:1432–1440.)


Gut | 2001

Regulation of E-box DNA binding during in vivo and in vitro activation of rat and human hepatic stellate cells.

Karen J. Vincent; E Jones; Michael J. P. Arthur; David E. Smart; Julie E. Trim; Matthew Wright; Derek A. Mann

BACKGROUND Activation of hepatic stellate cells (HSCs) to a myofibroblastic phenotype is a key event in liver fibrosis. Identification of transcription factors with activities that are modulated during HSC activation will improve our understanding of the molecular events controlling HSC activation. AIMS To determine if changes in E-box DNA binding activity occur during in vitro and in vivo activation of rat and human HSCs and to investigate mechanisms underlying any observed changes. METHODS Nuclear extracts were prepared from rat HSCs isolated and cultured from normal and carbon tetrachloride injured rat livers and from HSCs isolated from human liver. EMSA analysis of E-box DNA binding activity was performed on nuclear extracts to determine changes during HSC activation. Western and northern blot analysis of MyoD and Id1 basic helix-loop-helix (bHLH) proteins was performed to confirm expression in HSC. RESULTS HSC activation was associated with inducible expression of two low mobility E-box binding complexes that were immunoreactive with an anti-MyoD antibody. MyoD mRNA expression was found at similar levels in freshly isolated and activated HSCs; in contrast, MyoD protein expression was elevated in activated HSCs. Activation of rat HSCs was accompanied by reduced expression of the inhibitory bHLH protein Id1. CONCLUSIONS In vitro and in vivo activation of rat and human HSCs is accompanied by induction of MyoD binding to E-box DNA sequences which appears to be mechanistically associated with elevated MyoD protein expression and reduced expression of the inhibitory Id1 protein. Clarification of the role of MyoD and Id1 proteins in HSC activation and liver fibrogenesis is now required.


PLOS ONE | 2016

Mechanical strain causes adaptive change in bronchial fibroblasts enhancing profibrotic and inflammatory responses

Wiparat Manuyakorn; David E. Smart; Antonio Noto; Fabio Bucchieri; Hans Michael Haitchi; Stephen T. Holgate; Peter H. Howarth; Donna E. Davies

Asthma is characterized by periodic episodes of bronchoconstriction and reversible airway obstruction; these symptoms are attributable to a number of factors including increased mass and reactivity of bronchial smooth muscle and extracellular matrix (ECM) in asthmatic airways. Literature has suggested changes in cell responses and signaling can be elicited via modulation of mechanical stress acting upon them, potentially affecting the microenvironment of the cell. In this study, we hypothesized that mechanical strain directly affects the (myo)fibroblast phenotype in asthma. Therefore, we characterized responses of bronchial fibroblasts, from 6 normal and 11 asthmatic non-smoking volunteers, exposed to cyclical mechanical strain using flexible silastic membranes. Samples were analyzed for proteoglycans, α-smooth muscle actin (αSMA), collagens I and III, matrix metalloproteinase (MMP) 2 & 9 and interleukin-8 (IL-8) by qRT-PCR, Western blot, zymography and ELISA. Mechanical strain caused a decrease in αSMA mRNA but no change in either αSMA protein or proteoglycan expression. In contrast the inflammatory mediator IL-8, MMPs and interstitial collagens were increased at both the transcriptional and protein level. The results demonstrate an adaptive response of bronchial fibroblasts to mechanical strain, irrespective of donor. The adaptation involves cytoskeletal rearrangement, matrix remodelling and inflammatory cytokine release. These results suggest that mechanical strain could contribute to disease progression in asthma by promoting inflammation and remodelling responses.


Oncotarget | 2017

The histone deacetylase inhibitor, romidepsin, as a potential treatment for pulmonary fibrosis

Franco Conforti; Elizabeth R. Davies; Claire J. Calderwood; Thomas H. Thatcher; Mark G. Jones; David E. Smart; Sumeet Mahajan; Aiman Alzetani; Tom Havelock; Toby M. Maher; Philip L. Molyneaux; Andrew J. Thorley; Teresa D. Tetley; Jane A. Warner; Graham Packham; A. Ganesan; Paul Skipp; Benjamin Marshall; Luca Richeldi; Patricia J. Sime; Katherine Ma O’Reilly; Donna E. Davies

Idiopathic pulmonary fibrosis (IPF) is a progressive disease that usually affects elderly people. It has a poor prognosis and there are limited therapies. Since epigenetic alterations are associated with IPF, histone deacetylase (HDAC) inhibitors offer a novel therapeutic strategy to address the unmet medical need. This study investigated the potential of romidepsin, an FDA-approved HDAC inhibitor, as an anti-fibrotic treatment and evaluated biomarkers of target engagement that may have utility in future clinical trials. The anti-fibrotic effects of romidepsin were evaluated both in vitro and in vivo together with any harmful effect on alveolar type II cells (ATII). Bronchoalveolar lavage fluid (BALF) from IPF or control donors was analyzed for the presence of lysyl oxidase (LOX). In parallel with an increase in histone acetylation, romidepsin potently inhibited fibroblast proliferation, myofibroblast differentiation and LOX expression. ATII cell numbers and their lamellar bodies were unaffected. In vivo, romidepsin inhibited bleomycin-induced pulmonary fibrosis in association with suppression of LOX expression. LOX was significantly elevated in BALF of IPF patients compared to controls. These data show the anti-fibrotic effects of romidepsin, supporting its potential use as novel treatment for IPF with LOX as a companion biomarker for evaluation of early on-target effects.


Mucosal Immunology | 2017

Allergenic proteases cleave the chemokine CX3CL1 directly from the surface of airway epithelium and augment the effect of rhinovirus

Matthew Loxham; David E. Smart; Nicole Bedke; Natalie P. Smithers; I Filippi; Cornelia Blume; Emily J. Swindle; Kamran Tariq; Peter H. Howarth; Stephen T. Holgate; Donna E. Davies

CX3CL1 has been implicated in allergen-induced airway CD4+ T-lymphocyte recruitment in asthma. As epidemiological evidence supports a viral infection–allergen synergy in asthma exacerbations, we postulated that rhinovirus (RV) infection in the presence of allergen augments epithelial CX3CL1 release. Fully differentiated primary bronchial epithelial cultures were pretreated apically with house dust mite (HDM) extract and infected with rhinovirus-16 (RV16). CX3CL1 was measured by enzyme-linked immunosorbent assay and western blotting, and shedding mechanisms assessed using inhibitors, protease-activated receptor-2 (PAR-2) agonist, and recombinant CX3CL1-expressing HEK293T cells. Basolateral CX3CL1 release was unaffected by HDM but stimulated by RV16; inhibition by fluticasone or GM6001 implicated nuclear factor-κB and ADAM (A Disintegrin and Metalloproteinase) sheddases. Conversely, apical CX3CL1 shedding was stimulated by HDM and augmented by RV16. Although fluticasone or GM6001 reduced RV16+HDM-induced apical CX3CL1 release, heat inactivation or cysteine protease inhibition completely blocked CX3CL1 shedding. The HDM effect was via enzymatic cleavage of CX3CL1, not PAR-2 activation, yielding a product mitogenic for smooth muscle cells. Extracts of Alternaria fungus caused similar CX3CL1 shedding. We have identified a novel mechanism whereby allergenic proteases cleave CX3CL1 from the apical epithelial surface to yield a biologically active product. RV16 infection augmented HDM-induced CX3CL1 shedding—this may contribute to synergy between allergen exposure and RV infection in triggering asthma exacerbations and airway remodeling.

Collaboration


Dive into the David E. Smart's collaboration.

Top Co-Authors

Avatar

Donna E. Davies

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Franco Conforti

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

John P. Iredale

Southampton General Hospital

View shared research outputs
Top Co-Authors

Avatar

Mark G. Jones

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aiman Alzetani

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sumeet Mahajan

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Richeldi

Southampton General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge