Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Stone is active.

Publication


Featured researches published by David E. Stone.


Molecular and Cellular Biology | 1990

Stoichiometry of G protein subunits affects the Saccharomyces cerevisiae mating pheromone signal transduction pathway

Gary M. Cole; David E. Stone; Steven I. Reed

The Saccharomyces cerevisiae GPA1, STE4, and STE18 genes encode products homologous to mammalian G-protein alpha, beta, and gamma subunits, respectively. All three genes function in the transduction of the signal generated by mating pheromone in haploid cells. To characterize more completely the role of these genes in mating, we have conditionally overexpressed GPA1, STE4, and STE18, using the galactose-inducible GAL1 promoter. Overexpression of STE4 alone, or STE4 together with STE18, generated a response in haploid cells suggestive of pheromone signal transduction: arrest in G1 of the cell cycle, formation of cellular projections, and induction of the pheromone-inducible transcript FUS1 25- to 70-fold. High-level STE18 expression alone had none of these effects, nor did overexpression of STE4 in a MATa/alpha diploid. However, STE18 was essential for the response, since overexpression of STE4 was unable to activate a response in a ste18 null strain. GPA1 hyperexpression suppressed the phenotype of STE4 overexpression. In addition, cells that overexpressed GPA1 were more resistant to pheromone and recovered more quickly from pheromone than did wild-type cells, which suggests that GPA1 may function in an adaptation response to pheromone.


Journal of Cell Biology | 2004

Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p

Dina Matheos; Metodi V. Metodiev; Eric A Muller; David E. Stone; Mark D. Rose

During mating, budding yeast cells reorient growth toward the highest concentration of pheromone. Bni1p, a formin homologue, is required for this polarized growth by facilitating cortical actin cable assembly. Fus3p, a pheromone-activated MAP kinase, is required for pheromone signaling and cell fusion. We show that Fus3p phosphorylates Bni1p in vitro, and phosphorylation of Bni1p in vivo during the pheromone response is dependent on Fus3p. fus3 mutants exhibited multiple phenotypes similar to bni1 mutants, including defects in actin and cell polarization, as well as Kar9p and cytoplasmic microtubule localization. Disruption of the interaction between Fus3p and the receptor-associated Gα subunit caused similar mutant phenotypes. After pheromone treatment, Bni1p-GFP and Spa2p failed to localize to the cortex of fus3 mutants, and cell wall growth became completely unpolarized. Bni1p overexpression suppressed the actin assembly, cell polarization, and cell fusion defects. These data suggest a model wherein activated Fus3p is recruited back to the cortex, where it activates Bni1p to promote polarization and cell fusion.


The EMBO Journal | 1996

A pathway in the yeast cell division cycle linking protein kinase C (Pkc1) to activation of Cdc28 at START.

Nicholas J. Marini; Eric Meldrum; Ben Buehrer; Andrew V. Hubberstey; David E. Stone; Alexis Traynor-Kaplan; Steven I. Reed

In an effort to study further the mechanism of Cdc28 function and cell cycle commitment, we describe here a genetic approach to identify components of pathways downstream of the Cdc28 kinase at START by screening for mutations that decrease the effectiveness of signaling by Cdc28. The first locus to be characterized in detail using this approach was PKC1 which encodes a homolog of the Ca(2+)‐dependent isozymes of the mammalian protein kinase C (PKC) superfamily (Levin et al., 1990). By several genetic criteria, we show a functional interaction between CDC28 and PKC1 with PKC1 apparently functioning with respect to bud emergence downstream of START. Consistent with this, activity of the MAP kinase homolog Mpk1 (a putative Pkc1 effector) is stimulated by activation of Cdc28. Furthermore, we demonstrate a cell cycle‐dependent hydrolysis of phosphatidylcholine to diacylglycerol (a PKC activator) and choline phosphate at START. Diacylglycerol production is stimulated by Cdc28 in cycling cells and is closely associated with Cdc28 activation at START. These results imply that the activation of Pkc1, which is known to be necessary during bud morphogenesis, is mediated via the CDC28‐dependent stimulation of PC‐PLC activity in a novel cell cycle‐regulated signaling pathway.


Molecular and Cellular Biology | 2003

Effect of the Pheromone-Responsive Gα and Phosphatase Proteins of Saccharomyces cerevisiae on the Subcellular Localization of the Fus3 Mitogen-Activated Protein Kinase

Ernest Blackwell; Izabel M. Halatek; Hye Jin N Kim; Alexis T. Ellicott; Andrey A. Obukhov; David E. Stone

ABSTRACT The mating-specific Gα protein of Saccharomyces cerevisiae, Gpa1, stimulates adaptation to pheromone by a mechanism independent of Gβγ sequestration. Genetic evidence suggests that Gpa1 targets the Fus3 mitogen-activated protein kinase, and it has recently been shown that the two proteins interact in cells responding to pheromone. To test the possibility that Gpa1 downregulates the mating signal by affecting the localization of Fus3, we created a Fus3-green fluorescent protein (GFP) fusion protein. In vegetative cells, Fus3-GFP was found in both the cytoplasm and the nucleus. Pheromone stimulated a measurable increase in the ratio of nuclear to cytoplasmic Fus3-GFP. In contrast, the relative level of nuclear Fus3-GFP decreased as cells recovered from pheromone arrest and did not increase when cells adapted to chronic stimulus were challenged again. Accumulation of Fus3-GFP in the nuclei of stimulated cells was also inhibited by overexpression of either wild-type Gpa1, the E364K hyperadaptive mutant form of Gpa1, or the Msg5 dually specific phosphatase. The effects of Gpa1 and Msg5 on Fus3 are partially interdependent. In a genetic screen for adaptive defective mutants, a nonsense allele of the nucleocytoplasmic transport receptor, Kap104, was identified. Truncation of the Kap104 cargo-binding domain blocked the effect of both Gpa1E364K and Msg5 on Fus3-GFP localization. Based on these results, we propose that Gpa1 and Msg5 work in concert to downregulate the mating signal and that they do so by inhibiting the pheromone-induced increase of Fus3 in the nucleus. Kap104 is required for the Gα/phosphatase-mediated effect on Fus3 localization.


Molecular and Cellular Biology | 1990

G protein mutations that alter the pheromone response in Saccharomyces cerevisiae.

David E. Stone; Steven I. Reed

The GPA1 gene of Saccharomyces cerevisiae encodes a G alpha protein that couples the membrane-bound pheromone receptors to downstream elements in the mating response pathway. We have isolated seven mutant alleles of GPA1 that confer pheromone resistance: G50D (a glycine-to-aspartate change at position 50), G322E, G322R, E355K, E364K, G470D, and an E364K-G470D double mutant. All of the mutations lie within large regions that are highly conserved between Gpa1 and four other G alpha proteins; four of the changes are located in domains with proposed functions. On the basis of a gentic analysis, the pheromone-unresponsive GPA1 alleles can be divided into two classes: those that encode constitutively activated proteins and those that encode proteins unable to respond to the upstream signal. Our results support the hypothesis that the activated form of Gpa1 stimulates adaptation to pheromone.


Molecular and Cellular Biology | 1996

The mating-specific G(alpha) protein of Saccharomyces cerevisiae downregulates the mating signal by a mechanism that is dependent on pheromone and independent of G(beta)(gamma) sequestration.

Holly F. Stratton; Jianlong Zhou; Steven I. Reed; David E. Stone

It has been inferred from compelling genetic evidence that the pheromone-responsive G(alpha) protein of Saccharomyces cerevisiae, Gpa1, directly inhibits the mating signal by binding to its own beta(gamma) subunit. Gpa1 has also been implicated in a distinct but as yet uncharacterized negative regulatory mechanism. We have used three mutant alleles of GPA1, each of which confers resistance to otherwise lethal doses of pheromone, to explore this possibility. Our results indicate that although the G322E allele of GPA1 completely blocks the pheromone response, the E364K allele promotes recovery from pheromone treatment rather than insensitivity to it. This observation suggests that Gpa1, like other G(alpha) proteins, interacts with an effector molecule and stimulates a positive signal--in this case, an adaptive signal. Moreover, the Gpa1-mediated adaptive signal is itself induced by pheromone, is delayed relative to the mating signal, and does not involve sequestration of G(beta)(gamma). The behavior of N388D, a mutant form of Gpa1 predicted to be activated, strongly supports these conclusions. Although N388D cannot sequester beta(gamma), as evidenced by two-hybrid analysis and its inability to complement a Gpa1 null allele under normal growth conditions, it can stimulate adaptation and rescue a gpa1(delta) strain when cells are exposed to pheromone. Considered as a whole, our data suggest that the pheromone-responsive heterotrimeric G protein of S. cerevisiae has a self-regulatory signaling function. Upon activation, the heterotrimer dissociates into its two subunits, one of which stimulates the pheromone response, while the other slowly induces a negative regulatory mechanism that ultimately shuts off the mating signal downstream of the receptor.


Molecular Biology of the Cell | 2010

Polarization of the Yeast Pheromone Receptor Requires Its Internalization but Not Actin-dependent Secretion

Dmitry V. Suchkov; Reagan DeFlorio; Edward Draper; Amber Ismael; Madhushalini Sukumar; Robert A. Arkowitz; David E. Stone

The data presented in this paper suggest that pheromone-induced receptor phosphorylation and internalization, but not actin-dependent directed secretion, are required to establish receptor polarity.


BMC Cell Biology | 2007

The pheromone-induced nuclear accumulation of the Fus3 MAPK in yeast depends on its phosphorylation state and on Dig1 and Dig2

Ernest Blackwell; Hye Jin N Kim; David E. Stone

BackgroundLike mammalian MAP kinases, the mating-specific Fus3 MAPK of yeast accumulates in the nuclei of stimulated cells. Because Fus3 does not appear to be subjected to active nucleo-cytoplasmic transport, it is not clear how its activation by mating pheromone effects the observed change in its localization. One possibility is that the activation of Fus3 changes its affinity for nuclear and cytoplasmic tethers.ResultsDig1, Dig2, and Ste12 are nuclear proteins that interact with Fus3. We found that the pheromone-induced nuclear accumulation of a Fus3-GFP reporter is reduced in cells lacking Dig1 or Dig2, whereas Fus3T180AY182A-GFP localization was unaffected by the absence of these proteins. This suggests that Dig1 and Dig2 contribute to the retention of phosphorylated Fus3 in the nucleus. Moreover, overexpression of Ste12 caused the hyper-accumulation of Fus3-GFP (but not Fus3T180AY182A-GFP) in the nuclei of pheromone-treated cells, suggesting that Ste12 also plays a role in the nuclear retention of phosphorylated Fus3, either by directly interacting with it or by transcribing genes whose protein products are Fus3 tethers. We have previously reported that overexpression of the Msg5 phosphatase inhibits the nuclear localization of Fus3. Here we show that this effect depends on the phosphatase activity of Msg5, and provide evidence that both nuclear and cytoplasmic Msg5 can affect the localization of Fus3.ConclusionOur data are consistent with a model in which the pheromone-induced phosphorylation of Fus3 increases its affinity for nuclear tethers, which contributes to its nuclear accumulation and is antagonized by Msg5.


Molecular Biology of the Cell | 2009

The Mating-specific Gα Interacts with a Kinesin-14 and Regulates Pheromone-induced Nuclear Migration in Budding Yeast

Sofia Zaichick; Metodi V. Metodiev; Scott A. Nelson; Oleksii Durbrovskyi; Edward Draper; John A. Cooper; David E. Stone

As a budding yeast cell elongates toward its mating partner, cytoplasmic microtubules connect the nucleus to the cell cortex at the growth tip. The Kar3 kinesin-like motor protein is then thought to stimulate plus-end depolymerization of these microtubules, thus drawing the nucleus closer to the site where cell fusion and karyogamy will occur. Here, we show that pheromone stimulates a microtubule-independent interaction between Kar3 and the mating-specific Galpha protein Gpa1 and that Gpa1 affects both microtubule orientation and cortical contact. The membrane localization of Gpa1 was found to polarize early in the mating response, at about the same time that the microtubules begin to attach to the incipient growth site. In the absence of Gpa1, microtubules lose contact with the cortex upon shrinking and Kar3 is improperly localized, suggesting that Gpa1 is a cortical anchor for Kar3. We infer that Gpa1 serves as a positional determinant for Kar3-bound microtubule plus ends during mating.


Cell Biochemistry and Biophysics | 1999

The Yeast Pheromone-Responsive Gα Protein Stimulates Recovery from Chronic Pheromone Treatment by Two Mechanisms That Are Activated at Distinct Levels of Stimulus

Jianlong Zhou; Michelle Benig Arora; David E. Stone

The pheromone response ofSaccharomyces cerevisiae is mediated by a receptor-coupled heterotrimeric G protein. The βγ subunit of the G protein stimulates a PAK/MAP kinase cascade that leads to cellular changes preparatory to mating, while the pheromone-responsive Gα protein, Gpa1, antagonizes the Gβγ-induced signal. In its inactive conformation, Gpa1 sequesters Gβγ and tethers it to the receptor. In its active conformation, Gpa1 stimulates adaptive mechanisms that downregulate the mating signal, but which are independent of α-βγ binding. To elucidate these potentially novel signaling functions of Gα in yeast, epistasis analyses were performed using N388D, a hyperadaptive mutant form of Gpa1, and null alleles of various loci that have been implicated in adaptation. The results of these experiments indicate the existence of signaling thresholds that affect the yeast mating reaction. At low pheromone concentration, the Regulator of G Protein Signaling (RGS) homologue and putative guanosine triphosphatase (GTPase) activating protein, Sst2, appears to stimulate sequestration of Gβγ by Gpa1. Throughout the range of pheromone concentrations sufficient to cause cell cycle arrest, Gpa1 stimulates adaptive mechanisms that are partially dependent on Msg5 and Mpt5. Gpa1-mediated adaptation appears to be independent of Afr1, Akr1, and the carboxy-terminus of the pheromone receptor.

Collaboration


Dive into the David E. Stone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amber Ismael

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Reagan DeFlorio

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

David T. Eddington

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Edward Draper

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Steven I. Reed

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jie Liang

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Marie Elena Brett

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Nicholas Waszczak

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Oleksii Dubrovskyi

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge